Difference monotonicity analysis on discrete fractional operators with discrete generalized Mittag-Leffler kernels

被引:15
|
作者
Mohammed, Pshtiwan Othman [1 ]
Hamasalh, Faraidun Kadir [1 ]
Abdeljawad, Thabet [2 ,3 ,4 ]
机构
[1] Univ Sulaimani, Coll Educ, Dept Math, Sulaimani, Kurdistan Regio, Iraq
[2] Prince Sultan Univ, Dept Math & Gen Sci, POB 66833, Riyadh 11586, Saudi Arabia
[3] China Med Univ, Dept Med Res, Taichung 40402, Taiwan
[4] Asia Univ, Dept Comp Sci & Informat Engn, Taichung, Taiwan
关键词
Discrete generalized ML function; Discrete AB fractional operators; Monotonocity analysis; Discrete fractional MVT; INITIAL-VALUE PROBLEMS; DERIVATIVES;
D O I
10.1186/s13662-021-03372-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present the monotonicity analysis for the nabla fractional differences with discrete generalized Mittag-Leffler kernels ((ABR)(alpha-1)del(delta,gamma) y)(.) of order 0 < delta < 0.5, beta = 1, 0 < gamma <= 1 starting at alpha - 1. If ((ABR)(alpha-1)del(delta,gamma) y)(eta) >= 0, then we deduce that y(eta) is delta(2)gamma-increasing. That is, y(eta + 1) >= delta(2)gamma y(eta) for each eta is an element of N-alpha := {alpha, alpha + 1, ... }. Conversely, if y(eta) is increasing with y(alpha) >= 0, then we deduce that ((ABR)(alpha-1)del(delta,gamma) y)(eta) >= 0. Furthermore, the monotonicity properties of the Caputo and right fractional differences are concluded to. Finally, we find a fractional difference version of the mean value theorem as an application of our results. One can see that our results cover some existing results in the literature.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Numerical solutions of linear time-fractional advection-diffusion equations with modified Mittag-Leffler operator in a bounded domain
    Odibat, Zaid
    PHYSICA SCRIPTA, 2024, 99 (01)
  • [42] A Chebyshev spectral method based on operational matrix for fractional differential equations involving non-singular Mittag-Leffler kernel
    Baleanu, D.
    Shiri, B.
    Srivastava, H. M.
    Al Qurashi, M.
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [44] SOME FURTHER EXTENSIONS CONSIDERING DISCRETE PROPORTIONAL FRACTIONAL OPERATORS
    Rashid, Saima
    Sultana, Sobia
    Karaca, Yeliz
    Khalid, Aasma
    Chu, Yu-Ming
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (01)
  • [45] Discrete-time generalized mean fractional order controllers
    Lopes, Antonio M.
    Tenreiro Machado, J. A.
    IFAC PAPERSONLINE, 2018, 51 (04): : 43 - 47
  • [46] A Study of Generalized Hybrid Discrete Pantograph Equation via Hilfer Fractional Operator
    Shammakh, Wafa
    Selvam, A. George Maria
    Dhakshinamoorthy, Vignesh
    Alzabut, Jehad
    FRACTAL AND FRACTIONAL, 2022, 6 (03)
  • [47] Dynamical analysis of a fractional discrete-time vocal system
    Vignesh, D.
    Banerjee, Santo
    NONLINEAR DYNAMICS, 2023, 111 (05) : 4501 - 4515
  • [48] Vibration analysis of discrete parameter systems using fractional order models
    Hollkamp, John P.
    Sen, Mihir
    Semperlotti, Fabio
    SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE SYSTEMS 2017, 2017, 10168
  • [49] On the Solutions of a Class of Discrete PWC Systems Modeled with Caputo-Type Delta Fractional Difference Equations
    Danca, Marius-F.
    Jonnalagadda, Jagan Mohan
    FRACTAL AND FRACTIONAL, 2023, 7 (04)
  • [50] Discrete Laplace transform for interval-valued functions and its applications to interval fractional difference equations ☆
    Liu, Xuelong
    Ye, Guoju
    Liu, Wei
    FUZZY SETS AND SYSTEMS, 2025, 509