Difference monotonicity analysis on discrete fractional operators with discrete generalized Mittag-Leffler kernels

被引:15
|
作者
Mohammed, Pshtiwan Othman [1 ]
Hamasalh, Faraidun Kadir [1 ]
Abdeljawad, Thabet [2 ,3 ,4 ]
机构
[1] Univ Sulaimani, Coll Educ, Dept Math, Sulaimani, Kurdistan Regio, Iraq
[2] Prince Sultan Univ, Dept Math & Gen Sci, POB 66833, Riyadh 11586, Saudi Arabia
[3] China Med Univ, Dept Med Res, Taichung 40402, Taiwan
[4] Asia Univ, Dept Comp Sci & Informat Engn, Taichung, Taiwan
关键词
Discrete generalized ML function; Discrete AB fractional operators; Monotonocity analysis; Discrete fractional MVT; INITIAL-VALUE PROBLEMS; DERIVATIVES;
D O I
10.1186/s13662-021-03372-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present the monotonicity analysis for the nabla fractional differences with discrete generalized Mittag-Leffler kernels ((ABR)(alpha-1)del(delta,gamma) y)(.) of order 0 < delta < 0.5, beta = 1, 0 < gamma <= 1 starting at alpha - 1. If ((ABR)(alpha-1)del(delta,gamma) y)(eta) >= 0, then we deduce that y(eta) is delta(2)gamma-increasing. That is, y(eta + 1) >= delta(2)gamma y(eta) for each eta is an element of N-alpha := {alpha, alpha + 1, ... }. Conversely, if y(eta) is increasing with y(alpha) >= 0, then we deduce that ((ABR)(alpha-1)del(delta,gamma) y)(eta) >= 0. Furthermore, the monotonicity properties of the Caputo and right fractional differences are concluded to. Finally, we find a fractional difference version of the mean value theorem as an application of our results. One can see that our results cover some existing results in the literature.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Monotonicity results for fractional difference operators with discrete exponential kernels
    Abdeljawad, Thabet
    Baleanu, Dumitru
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [22] Monotonicity results for fractional difference operators with discrete exponential kernels
    Thabet Abdeljawad
    Dumitru Baleanu
    Advances in Difference Equations, 2017
  • [23] Novel aspects of discrete dynamical type inequalities within fractional operators having generalized (h)over-bar-discrete Mittag-Leffler kernels and application
    Rashid, Saima
    Sultana, Sobia
    Hammouch, Zakia
    Jarad, Fahd
    Hamed, Y. S.
    CHAOS SOLITONS & FRACTALS, 2021, 151
  • [24] Generalized Mittag-Leffler function and generalized fractional calculus operators
    Kilbas, AA
    Saigo, M
    Saxena, RK
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2004, 15 (01) : 31 - 49
  • [25] Fractional Differintegral Operators of The Generalized Mittag-Leffler Function
    Gupta, Anjali
    Parihar, C. L.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2015, 33 (01): : 137 - 144
  • [26] DISCRETE MITTAG-LEFFLER DISTRIBUTIONS
    PILLAI, RN
    JAYAKUMAR, K
    STATISTICS & PROBABILITY LETTERS, 1995, 23 (03) : 271 - 274
  • [27] Analysis of the fractional polio model with the Mittag-Leffler kernels
    Iqbal, Muhammad Sajid
    Ahmed, Nauman
    Akgul, Ali
    Satti, Ammad Mehmood
    Iqbal, Zafar
    Raza, Ali
    Rafiq, Muhammad
    Anjum, Rukhshanda
    Zakarya, Mohammed
    Park, Choonkil
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 64 : 957 - 967
  • [28] A STURM-LIOUVILLE APPROACH FOR CONTINUOUS AND DISCRETE MITTAG-LEFFLER KERNEL FRACTIONAL OPERATORS
    Mert, Raziye
    Abdeljawad, Thabet
    Peterson, Allan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (07): : 2417 - 2434
  • [29] Fractional operators with generalized Mittag-Leffler k-function
    Shahid Mubeen
    Rana Safdar Ali
    Advances in Difference Equations, 2019
  • [30] European option pricing models described by fractional operators with classical and generalized Mittag-Leffler kernels
    Yavuz, Mehmet
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2022, 38 (03) : 434 - 456