Difference monotonicity analysis on discrete fractional operators with discrete generalized Mittag-Leffler kernels

被引:15
|
作者
Mohammed, Pshtiwan Othman [1 ]
Hamasalh, Faraidun Kadir [1 ]
Abdeljawad, Thabet [2 ,3 ,4 ]
机构
[1] Univ Sulaimani, Coll Educ, Dept Math, Sulaimani, Kurdistan Regio, Iraq
[2] Prince Sultan Univ, Dept Math & Gen Sci, POB 66833, Riyadh 11586, Saudi Arabia
[3] China Med Univ, Dept Med Res, Taichung 40402, Taiwan
[4] Asia Univ, Dept Comp Sci & Informat Engn, Taichung, Taiwan
关键词
Discrete generalized ML function; Discrete AB fractional operators; Monotonocity analysis; Discrete fractional MVT; INITIAL-VALUE PROBLEMS; DERIVATIVES;
D O I
10.1186/s13662-021-03372-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present the monotonicity analysis for the nabla fractional differences with discrete generalized Mittag-Leffler kernels ((ABR)(alpha-1)del(delta,gamma) y)(.) of order 0 < delta < 0.5, beta = 1, 0 < gamma <= 1 starting at alpha - 1. If ((ABR)(alpha-1)del(delta,gamma) y)(eta) >= 0, then we deduce that y(eta) is delta(2)gamma-increasing. That is, y(eta + 1) >= delta(2)gamma y(eta) for each eta is an element of N-alpha := {alpha, alpha + 1, ... }. Conversely, if y(eta) is increasing with y(alpha) >= 0, then we deduce that ((ABR)(alpha-1)del(delta,gamma) y)(eta) >= 0. Furthermore, the monotonicity properties of the Caputo and right fractional differences are concluded to. Finally, we find a fractional difference version of the mean value theorem as an application of our results. One can see that our results cover some existing results in the literature.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Solution of Fractional Differential Equation Systems and Computation of Matrix Mittag-Leffler Functions
    Duan, Junsheng
    Chen, Lian
    SYMMETRY-BASEL, 2018, 10 (10):
  • [22] NEW ASPECTS OF FRACTIONAL BISWAS-MILOVIC MODEL WITH MITTAG-LEFFLER LAW
    Singh, Jagdev
    Kumar, Devendra
    Baleanu, Dumitru
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2019, 14 (03)
  • [23] Modelling groundwater fractal flow with fractional differentiation via Mittag-Leffler law
    Ahokposi, D. P.
    Atangana, Abdon
    Vermeulen, D. P.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (04):
  • [24] Results on Implicit Fractional Pantograph Equations with Mittag-Leffler Kernel and Nonlocal Condition
    Almalahi, Mohammed A.
    Panchal, Satish K.
    Jarad, Fahd
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [25] Nonlinear fractional differential inclusions with non-singular Mittag-Leffler kernel
    Abbas, Mohamed I.
    Ragusa, Maria Alessandra
    AIMS MATHEMATICS, 2022, 7 (11): : 20328 - 20340
  • [26] Some New Fractional-Calculus Connections between Mittag-Leffler Functions
    Srivastava, Hari M.
    Fernandez, Arran
    Baleanu, Dumitru
    MATHEMATICS, 2019, 7 (06)
  • [27] On the Analysis of a Fractional Tuberculosis Model with the Effect of an Imperfect Vaccine and Exogenous Factors under the Mittag-Leffler Kernel
    Ahmad, Saeed
    Pak, Sedat
    Rahman, Mati ur
    Al-Bossly, Afrah
    FRACTAL AND FRACTIONAL, 2023, 7 (07)
  • [28] On new general versions of Hermite-Hadamard type integral inequalities via fractional integral operators with Mittag-Leffler kernel
    Kavurmaci onalan, Havva
    Akdemir, Ahmet Ocak
    Avci Ardic, Merve
    Baleanu, Dumitru
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
  • [29] Solving fractional differential equations of variable-order involving operators with Mittag-Leffler kernel using artificial neural networks
    Zuniga-Aguilar, C. J.
    Romero-Ugalde, H. M.
    Gomez-Aguilar, J. F.
    Escobar-Jimenez, R. F.
    Valtierra-Rodriguez, M.
    CHAOS SOLITONS & FRACTALS, 2017, 103 : 382 - 403
  • [30] On the dynamics of fractional maps with power-law, exponential decay and Mittag-Leffler memory
    Avalos-Ruiz, L. F.
    Gomez-Aguilar, J. F.
    Atangana, A.
    Owolabi, Kolade M.
    CHAOS SOLITONS & FRACTALS, 2019, 127 : 364 - 388