Difference monotonicity analysis on discrete fractional operators with discrete generalized Mittag-Leffler kernels

被引:15
|
作者
Mohammed, Pshtiwan Othman [1 ]
Hamasalh, Faraidun Kadir [1 ]
Abdeljawad, Thabet [2 ,3 ,4 ]
机构
[1] Univ Sulaimani, Coll Educ, Dept Math, Sulaimani, Kurdistan Regio, Iraq
[2] Prince Sultan Univ, Dept Math & Gen Sci, POB 66833, Riyadh 11586, Saudi Arabia
[3] China Med Univ, Dept Med Res, Taichung 40402, Taiwan
[4] Asia Univ, Dept Comp Sci & Informat Engn, Taichung, Taiwan
关键词
Discrete generalized ML function; Discrete AB fractional operators; Monotonocity analysis; Discrete fractional MVT; INITIAL-VALUE PROBLEMS; DERIVATIVES;
D O I
10.1186/s13662-021-03372-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present the monotonicity analysis for the nabla fractional differences with discrete generalized Mittag-Leffler kernels ((ABR)(alpha-1)del(delta,gamma) y)(.) of order 0 < delta < 0.5, beta = 1, 0 < gamma <= 1 starting at alpha - 1. If ((ABR)(alpha-1)del(delta,gamma) y)(eta) >= 0, then we deduce that y(eta) is delta(2)gamma-increasing. That is, y(eta + 1) >= delta(2)gamma y(eta) for each eta is an element of N-alpha := {alpha, alpha + 1, ... }. Conversely, if y(eta) is increasing with y(alpha) >= 0, then we deduce that ((ABR)(alpha-1)del(delta,gamma) y)(eta) >= 0. Furthermore, the monotonicity properties of the Caputo and right fractional differences are concluded to. Finally, we find a fractional difference version of the mean value theorem as an application of our results. One can see that our results cover some existing results in the literature.
引用
收藏
页数:16
相关论文
共 50 条
  • [11] On a New Definition of Fractional Differintegrals with Mittag-Leffler Kernel
    Fernandez, Arran
    Baleanu, Dumitru
    FILOMAT, 2019, 33 (01) : 245 - 254
  • [12] Mittag-Leffler stability of fractional order nonlinear dynamic systems
    Li, Yan
    Chen, YangQuan
    Podlubny, Igor
    AUTOMATICA, 2009, 45 (08) : 1965 - 1969
  • [13] Monotonicity results for h-discrete fractional operators and application
    Suwan, Iyad
    Owies, Shahd
    Abdeljawad, Thabet
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [14] m-Parameter Mittag-Leffler function, its various properties, and relation with fractional calculus operators
    Agarwal, Ritu
    Chandola, Ankita
    Mishra Pandey, Rupakshi
    Sooppy Nisar, Kottakkaran
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (07) : 5365 - 5384
  • [15] MITTAG-LEFFLER INPUT STABILITY OF FRACTIONAL DIFFERENTIAL EQUATIONS AND ITS APPLICATIONS
    Sene, Ndolane
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (03): : 867 - 880
  • [16] A basic study of a fractional integral operator with extended Mittag-Leffler kernel
    Rahman, Gauhar
    Suwan, Iyad
    Nisar, Kottakkaran Sooppy
    Abdeljawad, Thabet
    Samraiz, Muhammad
    Ali, Asad
    AIMS MATHEMATICS, 2021, 6 (11): : 12757 - 12770
  • [17] A generalization of the Mittag-Leffler function and solution of system of fractional differential equations
    Duan, Junsheng
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [18] Modified Mittag-Leffler Functions with Applications in Complex Formulae for Fractional Calculus
    Fernandez, Arran
    Husain, Iftikhar
    FRACTAL AND FRACTIONAL, 2020, 4 (03) : 1 - 15
  • [19] Optimality conditions for fractional differential inclusions with nonsingular Mittag-Leffler kernel
    Bahaa, G. M.
    Hamiaz, Adnane
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [20] SELF-SIMILAR CAUCHY PROBLEMS AND GENERALIZED MITTAG-LEFFLER FUNCTIONS
    Patie, Pierre
    Srapionyan, Anna
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2021, 24 (02) : 447 - 482