Static, self-gravitating elastic bodies

被引:18
作者
Beig, R
Schmidt, BG
机构
[1] Univ Vienna, Inst Theoret Phys, A-1090 Vienna, Austria
[2] Albert Einstein Inst, Max Planck Inst Gravitat Phys, D-14476 Golm, Germany
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2003年 / 459卷 / 2029期
关键词
elasticity; elastic equilibria; gravitating bodies;
D O I
10.1098/rspa.2002.1031
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
An existence theorem, within the Newtonian theory of gravity, is proved for static, self-gravitating, isolated bodies composed of elastic material. The theorem covers the case where these bodies are small, but allows them to have arbitrary shape.
引用
收藏
页码:109 / 115
页数:7
相关论文
共 15 条
[1]  
Abraham R., 2012, Manifolds, tensor analysis, and applications, V75
[2]  
[Anonymous], 1983, MATH FDN ELASTICITY
[3]   The calculus of variations and materials science [J].
Ball, JM .
QUARTERLY OF APPLIED MATHEMATICS, 1998, 56 (04) :719-740
[4]   ON THE UNIQUENESS OF STATIC PERFECT-FLUID SOLUTIONS IN GENERAL-RELATIVITY [J].
BEIG, R ;
SIMON, W .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 144 (02) :373-390
[5]  
CHILLINGWORTH DRJ, 1982, ARCH RATION MECH AN, V80, P295, DOI 10.1007/BF00253119
[6]  
CHILLINGWORTH DRJ, 1982, ARCH RATION MECH AN, V83, P363
[7]  
CHILLINGWORTH DRJ, 1982, ARCH RATION MECH AN, V84, P203
[8]  
Ciarlet P.G., 1988, Mathematical Elasticity Volume I: Three-Dimensional Elasticity, V20
[10]  
LICHTENSTEIN L, 1933, GLEICHGEWICHTSFIGURE