Off-grid DOA estimation with nonconvex regularization via joint sparse representation

被引:53
作者
Liu, Qi [1 ]
So, Hing Cheung [1 ]
Gu, Yuantao [2 ,3 ]
机构
[1] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
[2] Tsinghua Univ, Dept Elect Engn, Beijing, Peoples R China
[3] Tsinghua Univ, TNList, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
DOA estimation; Off-grid model; Sparse representation; Nonconvex regularization; CO-PRIME ARRAYS; ARRIVAL ESTIMATION; CONVERGENCE; RECOVERY;
D O I
10.1016/j.sigpro.2017.05.020
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we address the problem of direction-of-arrival (DOA) estimation using sparse representation. As the performance of on-grid DOA estimation methods will degrade when the unknown DOAs are not on the angular grids, we consider the off-grid model via Taylor series expansion, but dictionary mismatch is introduced. The resulting problem is nonconvex with respect to the sparse signal and perturbation matrix. We develop a novel objective function regularized by the nonconvex sparsity-inducing penalty for off-grid DOA estimation, which is jointly convex with respect to the sparse signal and perturbation matrix. Then alternating minimization is applied to tackle this joint sparse representation of the signal recovery and perturbation matrix. Numerical examples are conducted to verify the effectiveness of the proposed method, which achieves more accurate DOA estimation performance and faster implementation than the conventional sparsity-aware and state-of-the-art off-grid schemes. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:171 / 176
页数:6
相关论文
共 29 条
[1]  
[Anonymous], 2010, 2010 P IEEE INFOCOM
[2]  
Boyd S., 2011, FOUND TRENDS MACH LE, V3, P1, DOI DOI 10.1561/2200000016
[3]  
Candès EJ, 2008, IEEE SIGNAL PROC MAG, V25, P21, DOI 10.1109/MSP.2007.914731
[4]   Enhancing Sparsity by Reweighted l1 Minimization [J].
Candes, Emmanuel J. ;
Wakin, Michael B. ;
Boyd, Stephen P. .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2008, 14 (5-6) :877-905
[5]   Parameter Estimation and Identifiability in Bistatic Multiple-Input Multiple-Output Radar [J].
Chan, Frankie K. W. ;
So, H. C. ;
Huang, Lei ;
Huang, Long-Ting .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2015, 51 (03) :2047-2056
[6]  
Chen LM, 2015, 2015 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), P1275, DOI 10.1109/GlobalSIP.2015.7418403
[7]   The Convergence Guarantees of a Non-Convex Approach for Sparse Recovery [J].
Chen, Laming ;
Gu, Yuantao .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (15) :3754-3767
[8]   Root Sparse Bayesian Learning for Off-Grid DOA Estimation [J].
Dai, Jisheng ;
Bao, Xu ;
Xu, Weichao ;
Chang, Chunqi .
IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (01) :46-50
[9]   Direction-of-Arrival Estimation Via Real-Valued Sparse Representation [J].
Dai, Jisheng ;
Xu, Xin ;
Zhao, Dean .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2013, 12 :376-379
[10]  
Duan HP, 2015, 2015 IEEE INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), P675, DOI 10.1109/ICDSP.2015.7251960