Polynomial time approximation schemes and parameterized complexity

被引:0
|
作者
Chen, JN [1 ]
Huang, XZ
Kanj, IA
Xia, G
机构
[1] Texas A&M Univ, Dept Comp Sci, College Stn, TX 77843 USA
[2] Depaul Univ, Sch Comp Sci Telecommun & Informat Syst, Chicago, IL 60604 USA
来源
MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2004, PROCEEDINGS | 2004年 / 3153卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we study the relationship between the approximability and the parameterized complexity of NP optimization problems. We introduce the notion of efficient fixed-parameter tractability and prove that, under a very general constraint, an NP optimization problem has a fully polynomial time approximation scheme if and only if the problem is efficiently fixed-parameter tractable. By enforcing a constraint of planarity on the W-hierarchy studied in parameterized complexity theory, we obtain a class of NP optimization problems, the planar W-hierarchy, and prove that all problems in this class have efficient polynomial time approximation schemes (EPTAS).
引用
收藏
页码:500 / 512
页数:13
相关论文
共 50 条
  • [1] Polynomial time approximation schemes and parameterized complexity
    Chen, Jianer
    Huang, Xiuzhen
    Kanj, Iyad A.
    Xia, Ge
    DISCRETE APPLIED MATHEMATICS, 2007, 155 (02) : 180 - 193
  • [2] On the efficiency of polynomial time approximation schemes
    Cesati, M
    Trevisan, L
    INFORMATION PROCESSING LETTERS, 1997, 64 (04) : 165 - 171
  • [3] The Complexity of Polynomial-Time Approximation
    Liming Cai
    Michael Fellows
    David Juedes
    Frances Rosamond
    Theory of Computing Systems, 2007, 41 : 459 - 477
  • [4] The complexity of polynomial-time approximation
    Cai, Liming
    Fellows, Michael
    Juedes, David
    Rosamond, Frances
    THEORY OF COMPUTING SYSTEMS, 2007, 41 (03) : 459 - 477
  • [5] Parameterized complexity and approximation algorithms
    Marx, Daniel
    COMPUTER JOURNAL, 2008, 51 (01): : 60 - 78
  • [6] Parameterized complexity and approximation algorithms
    Marx, Dániel
    Computer Journal, 2008, 51 (01): : 60 - 78
  • [7] Baker game and polynomial-time approximation schemes
    Dvorak, Zdenek
    PROCEEDINGS OF THE 2020 ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2020, : 2227 - 2240
  • [8] Polynomial-time approximation schemes for geometric graphs
    Erlebach, T
    Jansen, K
    Seidel, E
    PROCEEDINGS OF THE TWELFTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2001, : 671 - 679
  • [9] Baker game and polynomial-time approximation schemes
    Dvorak, Zdenek
    PROCEEDINGS OF THE THIRTY-FIRST ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA'20), 2020, : 2227 - 2240
  • [10] On the existence of polynomial time approximation schemes for OBDD minimization
    Sieling, D
    STACS 98 - 15TH ANNUAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, 1998, 1373 : 205 - 215