Fractional Powers of Monotone Operators in Hilbert Spaces

被引:0
作者
Hauer, Daniel [1 ]
He, Yuhan [1 ]
Liu, Dehui [1 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
关键词
Monotone Operators; Hilbert Space; Nonlinear Evolution Equations; Bessel Operator; Dirichlet-to-Neumann Operator; Fractional Powers; Nonlinear Semigroups; EXTENSION PROBLEM; SEMIGROUPS; SQUARE;
D O I
10.1515/ans-2019-2053
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this article is to provide a functional analytical framework for defining the fractional powers A(s) for -1 < s < 1 of maximal monotone (possibly multivalued and nonlinear) operators A in Hilbert spaces. We investigate the semigroup {e -(Ast)}t >= 0 generated by -A(s), prove comparison principles and interpolations properties of {e -(Ast)}t >= 0 in Lebesgue and Orlicz spaces. We give sufficient conditions implying that A(s) has a sub-differential structure. These results extend earlier ones obtained in the case s = 1/2 for maximal monotone operators [H. Brezis, equations d'evolution du second ordre associees a des operateurs monotones, Israel J. Math. 12 (1972), 51-60], [V. Barbu, A class of boundary problems for second order abstract differential equations, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 19 (1972), 295-319], [V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff International, Leiden, 1976], [E. I. Poffald and S. Reich, An incomplete Cauchy problem, J. Math. Anal. Appl. 113 (1986), no. 2, 514-543], and the recent advances for linear operators A obtained in [L. Caffarelli and L Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), no. 7-9, 1245-1260], [P. R. Stinga and J. L Torrea, Extension problem and Harnack's inequality for some fractional operators, Comm. Partial Differential Equations 35 (2010), no. 11, 2092-2122].
引用
收藏
页码:717 / 755
页数:39
相关论文
共 35 条
[1]   The square of a nonlinear operator [J].
Alaarabiou, EH ;
Benilan, P .
ARCHIV DER MATHEMATIK, 1996, 66 (04) :335-343
[2]   Fractional powers of sectorial operators via the Dirichlet-to-Neumann operator [J].
Arendt, W. ;
ter Elst, A. F. M. ;
Warma, M. .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2018, 43 (01) :1-24
[3]   The solution of the Kato square root problem for second order elliptic operators on Rn [J].
Auscher, P ;
Hofmann, S ;
Lacey, M ;
McIntosh, A ;
Tchamitchian, P .
ANNALS OF MATHEMATICS, 2002, 156 (02) :633-654
[4]  
Balakrishnan A., 1960, Pac. J. Math, V10, P419, DOI DOI 10.2140/PJM.1960.10.419
[5]  
BARBU V, 1972, J FAC SCI U TOKYO 1, V19, P295
[6]  
Barbu V., 1976, NONLINEAR SEMIGROUPS
[7]  
Barbu V., 2018, LIB MATH NS, V38, P57
[8]  
Barbu V, 2010, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-1-4419-5542-5_1
[9]  
BENILAN P, 1991, LECT NOTES PURE APPL, V135, P41
[10]  
Benilan P., 1971, SEMINAIRE SEMIGROUPE, V6, P1