Modelling and Simulation of Quantum Key Distribution using OptSim

被引:3
作者
Grote, Olaf [1 ]
Ahrens, Andreas [2 ]
Benavente-Peces, Cesar [1 ]
机构
[1] Univ Politecn Madrid, Campus Sur,Ctra Valencia, Madrid 28031, Spain
[2] Univ Appl Sci Wismar, Philipp Muller Str 14, D-23966 Wismar, Germany
来源
2021 IEEE WORKSHOP ON MICROWAVE THEORY AND TECHNIQUES IN WIRELESS COMMUNICATIONS, MTTW'21 | 2021年
关键词
quantum key distribution; BB84; protocol; qkdsimulation; modelling; data reconciliation; DISCRETE LOGARITHMS; ALGORITHMS;
D O I
10.1109/MTTW53539.2021.9607165
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a simulation approach to creating a symmetric key material with a Quantum Key Distribution (QKD) protocol. We also give an applied cryptographic purpose to realise quantum cryptography with standard programs. The QKD methodology guarantees a perfectly random secret key by encoding the quantum states of photons with a set of specific polarization angles shared between a transmitter and receiver participant via a quantum channel. This paper presents consistent theoretical results and demonstrates a feasible QKD standard BB84 protocol simulation with optical software and visuals for each QKD phase.
引用
收藏
页码:160 / 164
页数:5
相关论文
共 10 条
  • [1] Archana B, 2015, 2015 2ND INTERNATIONAL CONFERENCE ON ELECTRONICS AND COMMUNICATION SYSTEMS (ICECS), P457, DOI 10.1109/ECS.2015.7124946
  • [2] Bennett C H., 1984, Theoretical Computer Science, P175, DOI DOI 10.1016/J.TCS.2014.05.025
  • [3] Secure Quantum Key Distribution over 421 km of Optical Fiber
    Boaron, Alberto
    Boso, Gianluca
    Rusca, Davide
    Vulliez, Cedric
    Autebert, Claire
    Caloz, Misael
    Perrenoud, Matthieu
    Gras, Gaetan
    Bussieres, Felix
    Li, Ming-Jun
    Nolan, Daniel
    Martin, Anthony
    Zbinden, Hugo
    [J]. PHYSICAL REVIEW LETTERS, 2018, 121 (19)
  • [4] Buhari A., 2012, 2012 IEEE Symposium on Industrial Electronics and Applications (ISIEA 2012), P84, DOI 10.1109/ISIEA.2012.6496677
  • [5] Efficient Estimation of Pauli Channels
    Flammia, Steven T.
    Wallman, Joel J.
    [J]. ACM TRANSACTIONS ON QUANTUM COMPUTING, 2020, 1 (01):
  • [6] Park J., 1970, Foundations of Physics, V1, P23, DOI [10.1007/bf00708652, DOI 10.1007/BF00708652]
  • [7] Advances in quantum cryptography
    Pirandola, S.
    Andersen, U. L.
    Banchi, L.
    Berta, M.
    Bunandar, D.
    Colbeck, R.
    Englund, D.
    Gehring, T.
    Lupo, C.
    Ottaviani, C.
    Pereira, J. L.
    Razavi, M.
    Shaari, J. Shamsul
    Tomamichel, M.
    Usenko, V. C.
    Vallone, G.
    Villoresi, P.
    Wallden, P.
    [J]. ADVANCES IN OPTICS AND PHOTONICS, 2020, 12 (04) : 1012 - 1236
  • [8] SHOR PW, 1994, AN S FDN CO, P124
  • [9] Shor PW, 1997, SIAM J COMPUT, V26, P1484, DOI [10.1137/S0097539795293172, 10.1137/S0036144598347011]
  • [10] Wang XB, 2004, Arxiv, DOI arXiv:quant-ph/0405182