Comparison of the performance of an artificial neural network and multiple linear regression in the prediction of the biological activity of cocaine analogues from molecular descriptors

被引:0
|
作者
Puerta, Luis [1 ]
Labrador, Henry [1 ]
Arnias, Mario [1 ]
机构
[1] Univ Carabobo, Dept Quim, FACYT, Apartado 2005, Valencia, Venezuela
来源
INGENIERIA UC | 2022年 / 29卷 / 03期
关键词
biological activity; cocaine; artificial neural networks; multiple linear regression; DRUG;
D O I
10.54139/revinguc.v29i3.285
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
objective of this investigation was to compare the performance of artificial neural networks against multiple linear regression in predicting the biological activity of cocaine analogues from molecular descriptors. For this purpose, a set of 14 molecular descriptors grouped into quantum chemical descriptors and descriptors of the three-dimensional structure of the molecule were selected and their values were calculated theoretically for 65 cocaine analogue structures, followed by the construction of the artificial neural networks model and multiple linear regression for the prediction of biological activity expressed as affinity (IC50). It was found that the artificial neural networks had an R2 of 0,8651 while the linear multiple regression had an R2 value of 0,039, showing that artificial neural networks perform better than linear multiple regression in the prediction of the biological activity of cocaine analogues from the selected molecular descriptors, and that the effect of these descriptors on the biological activity is non-linear in nature.
引用
收藏
页码:274 / 278
页数:5
相关论文
共 50 条
  • [31] Development of comprehensive descriptors for multiple linear regression and artificial neural network modeling of retention behaviors of a variety of compounds on different stationary phases
    Jalali-Heravi, M
    Parastar, F
    JOURNAL OF CHROMATOGRAPHY A, 2000, 903 (1-2) : 145 - 154
  • [32] Comparison of artificial neural network and multiple linear regression for prediction of first lactation milk yield using early body weights in Sahiwal cattle
    Manoj, M.
    Gandhi, R. S.
    Raja, T., V
    Ruhil, A. P.
    Singh, A.
    Gupta, A. K.
    INDIAN JOURNAL OF ANIMAL SCIENCES, 2014, 84 (04) : 427 - 430
  • [33] Comparison of artificial neural network and regression models in the prediction of urban stormwater quality
    May, D.
    Sivakumar, M.
    WATER ENVIRONMENT RESEARCH, 2008, 80 (01) : 4 - 9
  • [34] Development of performance-based models for green concrete using multiple linear regression and artificial neural network
    Singh, Priyanka
    Adebanjo, Abiola
    Shafiq, Nasir
    Razak, Siti Nooriza Abd
    Kumar, Vicky
    Farhan, Syed Ahmad
    Adebanjo, Ifeoluwa
    Singh, Archisha
    Dixit, Saurav
    Singh, Subhav
    Sergeevna, Meshcheryakova Tatyana
    INTERNATIONAL JOURNAL OF INTERACTIVE DESIGN AND MANUFACTURING - IJIDEM, 2024, 18 (05): : 2945 - 2956
  • [35] Predictive Performance of Artificial Neural Network and Multiple Linear Regression Models in Predicting Adhesive Bonding Strength of Wood
    Bardak, S.
    Tiryaki, S.
    Bardak, T.
    Aydin, A.
    STRENGTH OF MATERIALS, 2016, 48 (06) : 811 - 824
  • [36] Predictive Performance of Artificial Neural Network and Multiple Linear Regression Models in Predicting Adhesive Bonding Strength of Wood
    S. Bardak
    S. Tiryaki
    T. Bardak
    A. Aydin
    Strength of Materials, 2016, 48 : 811 - 824
  • [37] Performance Prediction of Diamond Sawblades Using Artificial Neural Network and Regression Analysis
    Gokhan Aydin
    Izzet Karakurt
    Coskun Hamzacebi
    Arabian Journal for Science and Engineering, 2015, 40 : 2003 - 2012
  • [38] Performance Prediction of Diamond Sawblades Using Artificial Neural Network and Regression Analysis
    Aydin, Gokhan
    Karakurt, Izzet
    Hamzacebi, Coskun
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2015, 40 (07) : 2003 - 2012
  • [39] SUPERIORITY OF ARTIFICIAL NEURAL NETWORK MODEL OVER MULTIPLE LINEAR REGRESSION MODEL FOR PREDICTING BROCCOLI YIELD
    Mishra, Minakshi
    Thakur, Ratan Kumar
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2020, 16 (02): : 757 - 762
  • [40] Broiler Growth Performance Analysis: from Correlation Analysis, Multiple Linear Regression, to Neural Network
    Xiao, Meiyan
    Huang, Peijie
    Lin, Piyuan
    Yan, Shangwei
    2010 4TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING (ICBBE 2010), 2010,