Bose-Einstein condensate in a bichromatic optical lattice: an exact analytical model

被引:20
作者
Nath, Ajay [1 ]
Roy, Utpal [1 ]
机构
[1] Indian Inst Technol Patna, Dept Phys, Patna 800013, Bihar, India
关键词
Bose-Einstein condensate; soliton; bichromatic optical lattice; NONLINEAR SCHRODINGER-EQUATION; LOCALIZATION; WAVES; ATOMS;
D O I
10.1088/1612-2011/11/11/115501
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We provide an exact analytical model for the dynamics of a 1D Bose-Einstein condensate loaded in a bichromatic optical lattice. Although a host of exact solutions result from this novel method, we mainly concentrate on the solitonic excitations. The trapping potential and its depth of lattice frustration can be varied by tuning the power and the wavelengths of the two overlaying laser beams. Both attractive and repulsive regimes are thoroughly investigated. In the attractive domain, we obtain bright soliton, which reveals interesting variations with the depth of lattice frustration. Localization of the matter wave density is demonstrated as one of the applications in this regime. In the repulsive domain, dark soliton is obtained when the potential resembles an optical lattice. With appropriate tuning of the potential parameter, the dark soliton becomes modulated with an oscillatory background and gradually transforms to bright solitary trains.
引用
收藏
页数:9
相关论文
共 50 条
[1]  
Abramowitz M., 1964, Handbook of mathematical functions with formulas, graphs, and mathematical tables, DOI DOI 10.1119/1.15378
[2]   Localization of a Bose-Einstein condensate in a bichromatic optical lattice [J].
Adhikari, S. K. ;
Salasnich, L. .
PHYSICAL REVIEW A, 2009, 80 (02)
[3]   Universal scaling in a trapped Fermi super-fluid in the BCS-unitarity crossover [J].
Adhikari, S. K. .
LASER PHYSICS LETTERS, 2009, 6 (12) :901-905
[4]  
[Anonymous], 2002, BOSE EINSTEIN CONDEN
[5]   Spin liquids in frustrated magnets [J].
Balents, Leon .
NATURE, 2010, 464 (7286) :199-208
[6]   Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities [J].
Belmonte-Beitia, Juan ;
Perez-Garcia, Victor M. ;
Vekslerchik, Vadym ;
Torres, Pedro J. .
PHYSICAL REVIEW LETTERS, 2007, 98 (06)
[7]   Direct observation of Anderson localization of matter waves in a controlled disorder [J].
Billy, Juliette ;
Josse, Vincent ;
Zuo, Zhanchun ;
Bernard, Alain ;
Hambrecht, Ben ;
Lugan, Pierre ;
Clement, David ;
Sanchez-Palencia, Laurent ;
Bouyer, Philippe ;
Aspect, Alain .
NATURE, 2008, 453 (7197) :891-894
[8]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[9]   Bose-Einstein condensates in standing waves: The cubic nonlinear Schrodinger equation with a periodic potential [J].
Bronski, JC ;
Carr, LD ;
Deconinck, B ;
Kutz, JN .
PHYSICAL REVIEW LETTERS, 2001, 86 (08) :1402-1405
[10]   Spatially-antisymmetric localization of matter wave in a bichromatic optical lattice [J].
Cheng, Y. ;
Adhikari, S. K. .
LASER PHYSICS LETTERS, 2010, 7 (11) :824-830