Homogenization of the Neumann problem for higher order elliptic equations with periodic coefficients

被引:6
作者
Suslina, T. A. [1 ]
机构
[1] St Petersburg State Univ, Dept Phys, St Petersburg, Russia
基金
俄罗斯科学基金会;
关键词
Periodic differential operators; higher order elliptic equations; Neumann problem; homogenization; operator error estimates; DIRICHLET PROBLEM; ERROR ESTIMATE; SYSTEMS; OPERATORS;
D O I
10.1080/17476933.2017.1365845
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let O subset of R-d be a bounded domain of class C-2p. In L-2(O;C-n), we study a self-adjoint strongly elliptic operator A(N,epsilon) of order 2p given by the expression b(D)*g(x/epsilon)b(D), epsilon > 0, with Neumann boundary conditions. Here, g(x) is a bounded and positive definite matrix-valued function in R-d, periodic with respect to some lattice; b(D) = Sigma(vertical bar alpha vertical bar=p) b(alpha)D(alpha) is a differential operator of order p. The symbol b(xi) is subject to some condition ensuring strong ellipticity of the operator A(N,epsilon). We find approximations for the resolvent (A(N,epsilon )- zeta l) in different operator norms with error estimates depending on epsilon and zeta.
引用
收藏
页码:1185 / 1215
页数:31
相关论文
共 27 条
[1]  
[Anonymous], 2012, Homogenization of differential operators and integral functionals
[2]  
Bakhvalov N. S., 1989, MATH ITS APPL SOVIET, V36
[3]  
Bensoussan A., 1978, Asymptotic analysis for periodic structures
[4]  
Birman M. Sh., 2007, St. Petersburg Math. J., V18, P857
[5]  
BSu1 M. Sh., 2004, St. Petersburg Math. J., V15, P639
[6]  
Griso G, 2004, ASYMPTOTIC ANAL, V40, P269
[7]   INTERIOR ERROR ESTIMATE FOR PERIODIC HOMOGENIZATION [J].
Griso, Georges .
ANALYSIS AND APPLICATIONS, 2006, 4 (01) :61-79
[8]   Convergence Rates in L 2 for Elliptic Homogenization Problems [J].
Kenig, Carlos E. ;
Lin, Fanghua ;
Shen, Zhongwei .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 203 (03) :1009-1036
[9]   HOMOGENIZATION OF HIGH ORDER ELLIPTIC OPERATORS WITH PERIODIC COEFFICIENTS [J].
Kukushkin, A. A. ;
Suslina, T. A. .
ST PETERSBURG MATHEMATICAL JOURNAL, 2017, 28 (01) :65-108
[10]  
Maz'ya V. G., 1985, MONOGRAPHS STUDIES M, V23