Optimization and expansion of non-negative matrix factorization

被引:68
作者
Lin, Xihui [1 ]
Boutros, Paul C. [1 ,2 ,3 ]
机构
[1] Ontario Inst Canc Res, Informat & Biocomp, Toronto, ON, Canada
[2] Univ Calif Los Angeles, Dept Human Genet, Los Angeles, CA USA
[3] Univ Calif Los Angeles, Jonsson Comprehens Canc Ctr, Los Angeles, CA 90024 USA
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会; 加拿大健康研究院;
关键词
Non-negative matrix factorization; Deconvolution; Imputation; LEAST-SQUARES; IMPUTATION; DISCOVERY;
D O I
10.1186/s12859-019-3312-5
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background Non-negative matrix factorization (NMF) is a technique widely used in various fields, including artificial intelligence (AI), signal processing and bioinformatics. However existing algorithms and R packages cannot be applied to large matrices due to their slow convergence or to matrices with missing entries. Besides, most NMF research focuses only on blind decompositions: decomposition without utilizing prior knowledge. Finally, the lack of well-validated methodology for choosing the rank hyperparameters also raises concern on derived results. Results We adopt the idea of sequential coordinate-wise descent to NMF to increase the convergence rate. We demonstrate that NMF can handle missing values naturally and this property leads to a novel method to determine the rank hyperparameter. Further, we demonstrate some novel applications of NMF and show how to use masking to inject prior knowledge and desirable properties to achieve a more meaningful decomposition. Conclusions We show through complexity analysis and experiments that our implementation converges faster than well-known methods. We also show that using NMF for tumour content deconvolution can achieve results similar to existing methods like ISOpure. Our proposed missing value imputation is more accurate than conventional methods like multiple imputation and comparable to missForest while achieving significantly better computational efficiency. Finally, we argue that the suggested rank tuning method based on missing value imputation is theoretically superior to existing methods. All algorithms are implemented in the R package NNLM, which is freely available on CRAN and Github.
引用
收藏
页数:10
相关论文
共 17 条
[1]   Deconvolution of Blood Microarray Data Identifies Cellular Activation Patterns in Systemic Lupus Erythematosus [J].
Abbas, Alexander R. ;
Wolslegel, Kristen ;
Seshasayee, Dhaya ;
Modrusan, Zora ;
Clark, Hilary F. .
PLOS ONE, 2009, 4 (07)
[2]   Deciphering Signatures of Mutational Processes Operative in Human Cancer [J].
Alexandrov, Ludmil B. ;
Nik-Zainal, Serena ;
Wedge, David C. ;
Campbell, Peter J. ;
Stratton, Michael R. .
CELL REPORTS, 2013, 3 (01) :246-259
[3]   ISOpureR: an R implementation of a computational purification algorithm of mixed tumour profiles [J].
Anghel, Catalina V. ;
Quon, Gerald ;
Haider, Syed ;
Nguyen, Francis ;
Deshwar, Amit G. ;
Morris, Quaid D. ;
Boutros, Paul C. .
BMC BIOINFORMATICS, 2015, 16
[4]  
[Anonymous], 2008, P 25 INT C MACHINE L
[5]   Gene-expression profiles predict survival of patients with lung adenocarcinoma [J].
Beer, DG ;
Kardia, SLR ;
Huang, CC ;
Giordano, TJ ;
Levin, AM ;
Misek, DE ;
Lin, L ;
Chen, GA ;
Gharib, TG ;
Thomas, DG ;
Lizyness, ML ;
Kuick, R ;
Hayasaka, S ;
Taylor, JMG ;
Iannettoni, MD ;
Orringer, MB ;
Hanash, S .
NATURE MEDICINE, 2002, 8 (08) :816-824
[6]   Biomarker Discovery in Non-Small Cell Lung Cancer: Integrating Gene Expression Profiling, Meta-analysis, and Tissue Microarray Validation [J].
Botling, Johan ;
Edlund, Karolina ;
Lohr, Miriam ;
Hellwig, Birte ;
Holmberg, Lars ;
Lambe, Mats ;
Berglund, Anders ;
Ekman, Simon ;
Bergqvist, Michael ;
Ponten, Fredrik ;
Koenig, Andre ;
Fernandes, Oswaldo ;
Karlsson, Mats ;
Helenius, Gisela ;
Karlsson, Christina ;
Rahnenfuehrer, Joerg ;
Hengstler, Jan G. ;
Micke, Patrick .
CLINICAL CANCER RESEARCH, 2013, 19 (01) :194-204
[7]   Metagenes and molecular pattern discovery using matrix factorization [J].
Brunet, JP ;
Tamayo, P ;
Golub, TR ;
Mesirov, JP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (12) :4164-4169
[8]  
Eddelbuettel D, 2011, J STAT SOFTW, V40, P1
[9]  
Franc V, 2005, LECT NOTES COMPUT SC, V3691, P407
[10]   Semi-supervised Nonnegative Matrix Factorization for gene expression deconvolution: A case study [J].
Gaujoux, Renaud ;
Seoighe, Cathal .
INFECTION GENETICS AND EVOLUTION, 2012, 12 (05) :913-921