Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers

被引:155
作者
Hu, Jonathan [1 ]
Menyuk, Curtis R. [1 ]
Shaw, L. Brandon [2 ]
Sanghera, Jasbinder S. [2 ]
Aggarwal, Ishwar D. [2 ]
机构
[1] Univ Maryland Baltimore Cty, Baltimore, MD 21227 USA
[2] USN, Res Lab, Washington, DC 20375 USA
来源
OPTICS EXPRESS | 2010年 / 18卷 / 07期
关键词
PHOTONIC CRYSTAL FIBERS; ZBLAN FLUORIDE FIBERS; OPTICAL-FIBER; RAMAN GAIN; MU-M; DISPERSION; PULSES; POWER;
D O I
10.1364/OE.18.006722
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We describe in detail a procedure for maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers and the physics behind this procedure. First, we determine the key parameters that govern the design. Second, we find the conditions for the fiber to be endlessly single-mode; the fiber should be endlessly single-mode to maintain high nonlinearity and low coupling loss. We find that supercontinuum generation in As2Se3 fibers proceeds in two stages-an initial stage that is dominated by four-wave mixing and a later stage that is dominated by the Raman-induced soliton self-frequency shift. Third, we determine the conditions to maximize the Stokes wavelength that is generated by four-wave mixing in the initial stage. Finally, we put all these pieces together to maximize the bandwidth. We show that it is possible to generate an optical bandwidth of more than 4 mu m with an input pump wavelength of 2.5 mu m using an As2Se3 fiber with an air-hole-diameter-to-pitch ratio of 0.4 and a pitch of 3 mu m. Obtaining this bandwidth requires a careful choice of the fiber's waveguide parameters and the pulse's peak power and duration, which determine respectively the fiber's dispersion and nonlinearity. (C) 2010 Optical Society of America
引用
收藏
页码:6722 / 6739
页数:18
相关论文
共 40 条
  • [1] Agrawal G. P., 2001, NONLINEAR FIBER OPTI, V3rd
  • [2] Endlessly single-mode photonic crystal fiber
    Birks, TA
    Knight, JC
    Russell, PS
    [J]. OPTICS LETTERS, 1997, 22 (13) : 961 - 963
  • [3] Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers
    Coen, S
    Chau, AHL
    Leonhardt, R
    Harvey, JD
    Knight, JC
    Wadsworth, WJ
    Russell, PSJ
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2002, 19 (04) : 753 - 764
  • [4] Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs
    Domachuk, P.
    Wolchover, N. A.
    Cronin-Golomb, M.
    Wang, A.
    George, A. K.
    Cordeiro, C. M. B.
    Knight, J. C.
    Omenetto, F. G.
    [J]. OPTICS EXPRESS, 2008, 16 (10) : 7161 - 7168
  • [5] Supercontinuum generation in photonic crystal fiber
    Dudley, John M.
    Genty, Goery
    Coen, Stephane
    [J]. REVIEWS OF MODERN PHYSICS, 2006, 78 (04) : 1135 - 1184
  • [6] Nonsilica glasses for holey fibers
    Feng, M
    Mairaj, AK
    Hewak, DW
    Monro, TM
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2005, 23 (06) : 2046 - 2054
  • [7] Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: experiment and simulation
    Foster, MA
    Dudley, JM
    Kibler, B
    Cao, Q
    Lee, D
    Trebino, R
    Gaeta, AL
    [J]. APPLIED PHYSICS B-LASERS AND OPTICS, 2005, 81 (2-3): : 363 - 367
  • [8] Nanoengineering of photonic crystal fibers for supercontinuum spectral shaping
    Frosz, Michael H.
    Sorensen, Thorkild
    Bang, Ole
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2006, 23 (08) : 1692 - 1699
  • [9] Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation
    Frosz, Michael H.
    Bang, Ole
    Bjarklev, Anders
    [J]. OPTICS EXPRESS, 2006, 14 (20) : 9391 - 9407
  • [10] Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers
    Genty, G
    Lehtonen, M
    Ludvigsen, H
    Broeng, J
    Kaivola, M
    [J]. OPTICS EXPRESS, 2002, 10 (20): : 1083 - 1098