Peptide NGR Modified TiO2 Nanofiber Substrate for Circulating Tumor Cells Capture

被引:51
作者
Chen, Changchong [1 ]
Wu, Zeen [2 ]
Ding, Pi [1 ]
Sun, Na [1 ]
Liu, Hui [1 ]
Chen, Yong [3 ]
Wang, Zhili [1 ]
Pei, Renjun [1 ]
机构
[1] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, CAS Key Lab Nanobio Interface, Suzhou 215123, Peoples R China
[2] Soochow Univ, Affiliated Hosp 2, Suzhou 215004, Peoples R China
[3] Ecole Normale Super, CNRS ENS UPMC, UMR 8640, 24 Rue Lhomond, F-75005 Paris, France
基金
中国国家自然科学基金;
关键词
TiO2; nanofiber; Peptide NGR; Antifouling surface; Circulating tumor cells; Sensitive capture; SURFACE; RELEASE;
D O I
10.1007/s42765-020-00040-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The analysis of circulating tumor cells (CTCs) allows a noninvasive method of "real-time liquid biopsy" from the blood samples of cancer patients for the diagnosis of early-stage cancer, prognosis, and monitoring therapeutic response. In this study, we develop a simple, inexpensive, and reliable method that utilizes a small molecule peptide, the asparagine-glycine-arginine (NGR), as a capture probe for the selective enrichment and isolation of circulating tumor cells (CTCs). The multiscale TiO2 nanofibers are obtained by electrospinning and calcination. Bovine serum albumin (BSA) is decorated onto TiO2 nanofiber surfaces to inhibit non-target cell adhesion, while NGR peptides are conjugated onto the TiO2-BSA surface through the glutaraldehyde (GA) to specifically capture the target cells. The TiO2-BSA-NGR substrate exhibits a high capture sensitivity and efficiency from the mimical blood samples with PC-3 cancer cells as low as 10 cells/mL. The TiO2 nanofiber substrate can be a promising strategy for the capture and enumeration of CTCs in cancer progression monitoring.
引用
收藏
页码:186 / 193
页数:8
相关论文
共 30 条
[1]   Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model [J].
Arap, W ;
Pasqualini, R ;
Ruoslahti, E .
SCIENCE, 1998, 279 (5349) :377-380
[2]   A folic acid modified polystyrene nanosphere surface for circulating tumor cell capture [J].
Chen, Changchong ;
Wang, Zhili ;
Zhao, Yuewu ;
Cao, Yi ;
Ding, Pi ;
Liu, Hui ;
Su, Na ;
Pei, Renjun .
ANALYTICAL METHODS, 2019, 11 (44) :5718-5723
[3]   Perspectives on poly(dopamine) [J].
Dreyer, Daniel R. ;
Miller, Daniel J. ;
Freeman, Benny D. ;
Paul, Donald R. ;
Bielawski, Christopher W. .
CHEMICAL SCIENCE, 2013, 4 (10) :3796-3802
[4]   A microfluidic chip integrated with a high-density PDMS-based microfiltration membrane for rapid isolation and detection of circulating tumor cells [J].
Fan, Xiaoyun ;
Jia, Chunping ;
Yang, Jun ;
Li, Gang ;
Mao, Hongju ;
Jin, Qinghui ;
Zhao, Jianlong .
BIOSENSORS & BIOELECTRONICS, 2015, 71 :380-386
[5]   EGFR point mutation detection of single circulating tumor cells for lung cancer using a micro-well array [J].
Gao, Wanlei ;
Zhang, Xiaofen ;
Yuan, Haojun ;
Wang, Yanmin ;
Zhou, Hongbo ;
Jin, Han ;
Jia, Chunping ;
Jin, Qinghui ;
Cong, Hui ;
Zhao, Jianlong .
BIOSENSORS & BIOELECTRONICS, 2019, 139
[6]   Circulating tumour cells escape from EpCAM-based detection due to epithelial-to-mesenchymal transition [J].
Gorges, Tobias M. ;
Tinhofer, Ingeborg ;
Drosch, Michael ;
Roese, Lars ;
Zollner, Thomas M. ;
Krahn, Thomas ;
von Ahsen, Oliver .
BMC CANCER, 2012, 12
[7]  
Hu Brian, 2013, Cancers (Basel), V5, P1676, DOI 10.3390/cancers5041676
[8]   Surface Characteristics of a Self-Polymerized Dopamine Coating Deposited on Hydrophobic Polymer Films [J].
Jiang, Jinhong ;
Zhu, Liping ;
Zhu, Lijing ;
Zhu, Baoku ;
Xu, Youyi .
LANGMUIR, 2011, 27 (23) :14180-14187
[9]   General functionalization route for cell adhesion on non-wetting surfaces [J].
Ku, Sook Hee ;
Ryu, Jungki ;
Hong, Seon Ki ;
Lee, Haeshin ;
Park, Chan Beum .
BIOMATERIALS, 2010, 31 (09) :2535-2541
[10]   Detection of circulating tumour cells with a hybrid (epithelial/mesenchymal) phenotype in patients with metastatic non-small cell lung cancer [J].
Lecharpentier, A. ;
Vielh, P. ;
Perez-Moreno, P. ;
Planchard, D. ;
Soria, J. C. ;
Farace, F. .
BRITISH JOURNAL OF CANCER, 2011, 105 (09) :1338-1341