Orbital HP-Clouds for solving Schrodinger equation in quantum mechanics

被引:13
作者
Chen, J. S. [1 ]
Hu, W.
Puso, M.
机构
[1] Univ Calif Los Angeles, Dept Civil & Environm Engn, Los Angeles, CA 90095 USA
[2] Lawrence Livermore Natl Lab, Dept Mech Engn, Livermore, CA 95616 USA
关键词
partition of unity; HP-Clouds; nodal integration; schrodinger equation; quantum mechanics;
D O I
10.1016/j.cma.2006.10.030
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Solving Schrodinger equation in quantum mechanics presents a challenging task in numerical methods due to the high order behavior and high dimension characteristics in the wave functions, in addition to the highly coupled nature between wave functions. This work introduces orbital and polynomial enrichment functions to the partition of unity for solution of Schr6dinger equation under the framework of HP-Clouds. An intrinsic enrichment of orbital function and extrinsic enrichment of monomial functions are proposed. Due to the employment of higher order basis functions, a higher order stabilized conforming nodal integration is developed. The proposed methods are implemented using the density functional theory for solution of Schr6dinger equation. Analysis of several single and multi-electron/nucleus structures demonstrates the effectiveness of the proposed method. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:3693 / 3705
页数:13
相关论文
共 62 条
  • [11] Bonet J, 2000, INT J NUMER METH ENG, V47, P1189, DOI 10.1002/(SICI)1097-0207(20000228)47:6<1189::AID-NME830>3.0.CO
  • [12] 2-I
  • [13] BRANSDEN BH, 2000, QUANTUM MECHANICS
  • [14] FINITE-DIFFERENCE-PSEUDOPOTENTIAL METHOD - ELECTRONIC-STRUCTURE CALCULATIONS WITHOUT A BASIS
    CHELIKOWSKY, JR
    TROULLIER, N
    SAAD, Y
    [J]. PHYSICAL REVIEW LETTERS, 1994, 72 (08) : 1240 - 1243
  • [15] HIGHER-ORDER FINITE-DIFFERENCE PSEUDOPOTENTIAL METHOD - AN APPLICATION TO DIATOMIC-MOLECULES
    CHELIKOWSKY, JR
    TROULLIER, N
    WU, K
    SAAD, Y
    [J]. PHYSICAL REVIEW B, 1994, 50 (16) : 11355 - 11364
  • [16] Reproducing kernel particle methods for large deformation analysis of non-linear structures
    Chen, JS
    Pan, CH
    Wu, CT
    Liu, WK
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1996, 139 (1-4) : 195 - 227
  • [17] Non-linear version of stabilized conforming nodal integration for Galerkin mesh-free methods
    Chen, JS
    Yoon, SP
    Wu, CT
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2002, 53 (12) : 2587 - 2615
  • [18] Chen JS, 2001, INT J NUMER METH ENG, V50, P435, DOI 10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO
  • [19] 2-A
  • [20] The method of finite spheres
    De, S
    Bathe, KJ
    [J]. COMPUTATIONAL MECHANICS, 2000, 25 (04) : 329 - 345