Blind Identification of Sparse Systems Using Symbolic Dynamics Encoding

被引:1
|
作者
Mukhopadhyay, Sumona [1 ]
Leung, Henry [2 ]
机构
[1] York Univ, Dept Elect & Comp Sci, Toronto, ON M3J 1P3, Canada
[2] Univ Calgary, Dept Elect & Comp Engn, Calgary, AB T2N 1N4, Canada
关键词
Chaotic communication; Estimation; Encoding; Noise measurement; Neurons; Machine learning; MIMICs; Chaos; artificial neural network; sparse; symbolic dynamics; estimation; machine learning;
D O I
10.1109/LCOMM.2021.3053151
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
The unique properties of chaotic signals have led to their application in improving blind system identification performance. However, the role of chaos in blind identification of a sparse system has not been investigated. In this letter, we apply symbolic dynamics to encode a random signal to reap the benefits of chaos in improving blind identification of a sparse Moving Average (MA) system. We derive an estimation technique using the encoded signal by training a machine learning model that mimics a chaotic map. The novelty of our work is to exploit the merits of chaos in improving blind estimation performance of sparse systems at low signal-to-noise (SNR) ratio. The estimation error of our method is close to the minimum mean square error of the nonblind method for sparse system estimation and works well for a short data sequence.
引用
收藏
页码:1650 / 1654
页数:5
相关论文
共 50 条
  • [41] Positive knots from discrete dynamical systems via symbolic dynamics
    Elrifai, EA
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2005, 44 (09) : 1337 - 1345
  • [42] Testing for spatial association of qualitative data using symbolic dynamics
    Ruiz, Manuel
    Lopez, Fernando
    Paez, Antonio
    JOURNAL OF GEOGRAPHICAL SYSTEMS, 2010, 12 (03) : 281 - 309
  • [43] Positive Knots From Discrete Dynamical Systems Via Symbolic Dynamics
    E. A. Elrifai
    International Journal of Theoretical Physics, 2005, 44 : 1337 - 1345
  • [44] MULTIPLE LYAPUNOV FUNCTIONS AND MEMORY: A SYMBOLIC DYNAMICS APPROACH TO SYSTEMS AND CONTROL
    Della Rossa, Matteo
    Jungers, Raphael M.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2024, 62 (05) : 2695 - 2722
  • [45] Identification Using Binary Measurements for IIR Systems
    Pouliquen, Mathieu
    Pigeon, Eric
    Gehan, Olivier
    Goudjil, Abdelhak
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (02) : 786 - 793
  • [46] Prognostic Decision Support Using Symbolic Dynamics in CTG Monitoring
    Cesarelli, Mario
    Romano, Maria
    Bifulco, Paolo
    Improta, Giovanni
    D'Addio, Giovanni
    DATA AND KNOWLEDGE FOR MEDICAL DECISION SUPPORT, 2013, 186 : 140 - 144
  • [47] MA blind identification based on order statistics application to binary-driven systems
    Tourneret, JY
    Lacaze, B
    SIGNAL PROCESSING, 1996, 51 (01) : 15 - 28
  • [48] Testing for spatial association of qualitative data using symbolic dynamics
    Manuel Ruiz
    Fernando López
    Antonio Páez
    Journal of Geographical Systems, 2010, 12 : 281 - 309
  • [49] Blind identification of autoregressive system using chaos
    Xie, N
    Leung, H
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2005, 52 (09) : 1953 - 1964
  • [50] A new multiple line outage identification formulation using a sparse vector recovery technique
    Arabali, Amirsarnan
    Ghofrani, Mahmoud
    Farasat, Mehdi
    ELECTRIC POWER SYSTEMS RESEARCH, 2017, 142 : 237 - 248