Blind Identification of Sparse Systems Using Symbolic Dynamics Encoding

被引:1
|
作者
Mukhopadhyay, Sumona [1 ]
Leung, Henry [2 ]
机构
[1] York Univ, Dept Elect & Comp Sci, Toronto, ON M3J 1P3, Canada
[2] Univ Calgary, Dept Elect & Comp Engn, Calgary, AB T2N 1N4, Canada
关键词
Chaotic communication; Estimation; Encoding; Noise measurement; Neurons; Machine learning; MIMICs; Chaos; artificial neural network; sparse; symbolic dynamics; estimation; machine learning;
D O I
10.1109/LCOMM.2021.3053151
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
The unique properties of chaotic signals have led to their application in improving blind system identification performance. However, the role of chaos in blind identification of a sparse system has not been investigated. In this letter, we apply symbolic dynamics to encode a random signal to reap the benefits of chaos in improving blind identification of a sparse Moving Average (MA) system. We derive an estimation technique using the encoded signal by training a machine learning model that mimics a chaotic map. The novelty of our work is to exploit the merits of chaos in improving blind estimation performance of sparse systems at low signal-to-noise (SNR) ratio. The estimation error of our method is close to the minimum mean square error of the nonblind method for sparse system estimation and works well for a short data sequence.
引用
收藏
页码:1650 / 1654
页数:5
相关论文
共 50 条
  • [31] Symbolic Dynamics Applied to the Identification of Flow Patterns Inside Tube Banks
    de Paula, Alexandre Vagtinski
    Magalhaes Endres, Luiz Augusto
    Moller, Sergio Vicosa
    NUCLEAR SCIENCE AND ENGINEERING, 2016, 184 (03) : 334 - 345
  • [32] Complexity of bio-computation: Symbolic dynamics in membrane systems
    Muskulus, M
    Brijder, R
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2006, 17 (01) : 147 - 165
  • [33] Testing heteroskedasticity of unknown form using symbolic dynamics
    M. Matilla-García
    I. Morales
    M. Ruiz
    The European Physical Journal Special Topics, 2013, 222 : 317 - 332
  • [34] Detection of Power Quality Disturbances Using Symbolic Dynamics
    Gupta, Manoj
    Kumar, Rajesh
    2014 RECENT ADVANCES AND INNOVATIONS IN ENGINEERING (ICRAIE), 2014,
  • [35] Identification of radon anomalies induced by earthquake activity using intelligent systems
    Haider, Takreem
    Barkat, Adnan
    Hayat, Umar
    Ali, Aamir
    Awais, Muhammad
    Alam, Aftab
    Rehman, Khaista
    Shah, Muhammad Ali
    JOURNAL OF GEOCHEMICAL EXPLORATION, 2021, 222
  • [36] Blind Estimation of Self-Synchronous Scrambler Using Orthogonal Complement Space in DSSS Systems
    KIM, Y. O. O. N. J. I.
    KIM, J. U. N. G. M. I. N.
    SONG, J. U. N. G. H. W. A. N.
    YOON, D. O. N. G. W. E. O. N.
    IEEE ACCESS, 2022, 10 : 66522 - 66528
  • [37] A STUDY ON GLOBAL STABILIZATION OF PERIODIC ORBITS IN DISCRETE-TIME CHAOTIC SYSTEMS BY USING SYMBOLIC DYNAMICS
    Suzuki, Masayasu
    Sakamoto, Noboru
    KYBERNETIKA, 2015, 51 (01) : 4 - 19
  • [38] Communication cost reduction using sparse ternary compression and encoding for FedAvg
    Thi Quynh Khanh Dinh
    Thanh-Hai Tran
    Thi-Lan Le
    12TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE (ICTC 2021): BEYOND THE PANDEMIC ERA WITH ICT CONVERGENCE INNOVATION, 2021, : 351 - 356
  • [39] Blind System Identification in Noise Using a Dynamic-Based Estimator
    Mukhopadhyay, Sumona
    Li, Boyuan
    Leung, Henry
    IEEE ACCESS, 2021, 9 : 12861 - 12878
  • [40] Bayesian Sparse Blind Deconvolution Using MCMC Methods Based on Normal-Inverse-Gamma Prior
    Civek, Burak C.
    Ertin, Emre
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 1256 - 1269