Blind Identification of Sparse Systems Using Symbolic Dynamics Encoding

被引:1
|
作者
Mukhopadhyay, Sumona [1 ]
Leung, Henry [2 ]
机构
[1] York Univ, Dept Elect & Comp Sci, Toronto, ON M3J 1P3, Canada
[2] Univ Calgary, Dept Elect & Comp Engn, Calgary, AB T2N 1N4, Canada
关键词
Chaotic communication; Estimation; Encoding; Noise measurement; Neurons; Machine learning; MIMICs; Chaos; artificial neural network; sparse; symbolic dynamics; estimation; machine learning;
D O I
10.1109/LCOMM.2021.3053151
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
The unique properties of chaotic signals have led to their application in improving blind system identification performance. However, the role of chaos in blind identification of a sparse system has not been investigated. In this letter, we apply symbolic dynamics to encode a random signal to reap the benefits of chaos in improving blind identification of a sparse Moving Average (MA) system. We derive an estimation technique using the encoded signal by training a machine learning model that mimics a chaotic map. The novelty of our work is to exploit the merits of chaos in improving blind estimation performance of sparse systems at low signal-to-noise (SNR) ratio. The estimation error of our method is close to the minimum mean square error of the nonblind method for sparse system estimation and works well for a short data sequence.
引用
收藏
页码:1650 / 1654
页数:5
相关论文
共 50 条
  • [1] Blind System Identification Using Symbolic Dynamics
    Mukhopadhyay, Sumona
    Leung, Henry
    IEEE ACCESS, 2018, 6 : 24888 - 24903
  • [2] Model identification in reactor-based combustion closures using sparse symbolic regression
    Freitas, Rodolfo S. M.
    Pequin, Arthur
    Galassi, Riccardo M.
    Attili, Antonio
    Parente, Alessandro
    COMBUSTION AND FLAME, 2023, 255
  • [3] Encoding, symbolic dynamics, cryptography and C++ implementations
    Hardy, Y.
    Sabatta, D.
    PHYSICS LETTERS A, 2007, 366 (06) : 575 - 584
  • [4] Identification of Modal Parameters Using an Improved Sparse Blind Source Separation Method
    Yu, Gang
    Wang, Aoran
    IEEE ACCESS, 2025, 13 : 73903 - 73915
  • [5] SYMBOLIC DYNAMICS FOR NONHYPERBOLIC SYSTEMS
    Richeson, David
    Wiseman, Jim
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (12) : 4373 - 4385
  • [6] A review of symbolic dynamics and symbolic reconstruction of dynamical systems
    Hirata, Yoshito
    Amigo, Jose M.
    CHAOS, 2023, 33 (05)
  • [7] Sparse Identification for Nonlinear Optical Communication Systems
    Sorokina, Mariia
    Sygletos, Stylianos
    Turitsyn, Sergei
    2017 19TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON), 2017,
  • [8] Failure precursor detection in complex electrical systems using symbolic dynamics
    Patankar, R. P.
    Rajagopalan, V.
    Ray, A.
    INTERNATIONAL JOURNAL OF SIGNAL AND IMAGING SYSTEMS ENGINEERING, 2008, 1 (01) : 68 - 77
  • [9] Sparse identification of slow timescale dynamics
    Bramburger, Jason J.
    Dylewsky, Daniel
    Kutz, J. Nathan
    PHYSICAL REVIEW E, 2020, 102 (02)
  • [10] Symbolic Dynamics of Wavelet Images for Pattern Identification
    Jin, Xin
    Gupta, Shalabh
    Mukherjee, Kushal
    Ray, Asok
    2010 AMERICAN CONTROL CONFERENCE, 2010, : 3481 - 3486