MicroRNome analysis generates a blood-based signature for endometriosis

被引:28
作者
Bendifallah, Sofiane [1 ,2 ]
Dabi, Yohann [1 ,2 ,3 ]
Suisse, Stephane [2 ]
Jornea, Ludmila [4 ]
Bouteiller, Delphine [5 ]
Touboul, Cyril [1 ,2 ]
Puchar, Anne [1 ,2 ]
Darai, Emile [1 ,2 ]
机构
[1] Hop Tenon, Dept Obstet & Reprod Med, 4 Rue Chine, F-75020 Paris, France
[2] Sorbonne Univ GRC6 C3E SU, Clin Res Grp GRC Paris 6, Ctr Expert Endometriose C3E, Paris, France
[3] Sorbonne Univ, Canc Biol & Therapeut, Ctr Rech St Antoine CRSA, INSERM,UMR S 938, F-75020 Paris, France
[4] Sorbonne Univ, Inst Cerveau Paris, Hop Pitie Salpetriere, AP HP,Brain Inst ICM,Inserm,CNRS, Paris, France
[5] Hop La Pitie Salpetriere, Gentoyping & Sequencing Core Facil, ICM, iGenSeq,Inst Cerveau & Moelle Epiniere, 47-83 Blvd lHop, F-75013 Paris, France
关键词
LOGISTIC-REGRESSION; PROFILE; WOMEN; IDENTIFICATION;
D O I
10.1038/s41598-022-07771-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Endometriosis, characterized by endometrial-like tissue outside the uterus, is thought to affect 2-10% of women of reproductive age: representing about 190 million women worldwide. Numerous studies have evaluated the diagnostic value of blood biomarkers but with disappointing results. Thus, the gold standard for diagnosing endometriosis remains laparoscopy. We performed a prospective trial, the ENDO-miRNA study, using both Artificial Intelligence (AI) and Machine Learning (ML), to analyze the current human miRNome to differentiate between patients with and without endometriosis, and to develop a blood-based microRNA (miRNA) diagnostic signature for endometriosis. Here, we present the first blood-based diagnostic signature obtained from a combination of two robust and disruptive technologies merging the intrinsic quality of miRNAs to condense the endometriosis phenotype (and its heterogeneity) with the modeling power of AI. The most accurate signature provides a sensitivity, specificity, and Area Under the Curve (AUC) of 96.8%, 100%, and 98.4%, respectively, and is sufficiently robust and reproducible to replace the gold standard of diagnostic surgery. Such a diagnostic approach for this debilitating disorder could impact recommendations from national and international learned societies.
引用
收藏
页数:13
相关论文
共 67 条
[1]   The miRNA Mirage: How Close Are We to Finding a Non-Invasive Diagnostic Biomarker in Endometriosis? A Systematic Review [J].
Agrawal, Swati ;
Tapmeier, Thomas T. ;
Rahmioglu, Nilufer ;
Kirtley, Shona ;
Zondervan, Krina T. ;
Becker, Christian M. .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (02)
[2]  
Akter Sadia, 2020, AMIA Jt Summits Transl Sci Proc, V2020, P33
[3]   Machine Learning Classifiers for Endometriosis Using Transcriptomics and Methylomics Data [J].
Akter, Sadia ;
Xu, Dong ;
Nagel, Susan C. ;
Bromfield, John J. ;
Pelch, Katherine ;
Wilshire, Gilbert B. ;
Joshi, Trupti .
FRONTIERS IN GENETICS, 2019, 10
[4]   Biomarkers for the Noninvasive Diagnosis of Endometriosis: State of the Art and Future Perspectives [J].
Anastasiu, Costin Vlad ;
Moga, Marius Alexandru ;
Elena Neculau, Andrea ;
Balan, Andreea ;
Scarneciu, Ioan ;
Dragomir, Roxana Maria ;
Dull, Ana-Maria ;
Chicea, Liana-Maria .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (05)
[5]   Consensus miRNA expression profiles derived from interplatform normalization of microarray data [J].
Bargaje, Rhishikesh ;
Hariharan, Manoj ;
Scaria, Vinod ;
Pillai, Beena .
RNA, 2010, 16 (01) :16-25
[6]   MicroRNAs: Target Recognition and Regulatory Functions [J].
Bartel, David P. .
CELL, 2009, 136 (02) :215-233
[7]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[8]   Deep pelvic endometriosis: MR imaging for diagnosis and prediction of extension of disease [J].
Bazot, M ;
Darai, E ;
Hourani, R ;
Thomassin, I ;
Cortez, A ;
Uzan, S ;
Buy, JN .
RADIOLOGY, 2004, 232 (02) :379-389
[9]   Diagnostic accuracy of physical examination, transvaginal sonography, rectal endoscopic sonography, and magnetic resonance imaging to diagnose deep infiltrating endometriosis [J].
Bazot, Marc ;
Lafont, Clarisse ;
Rouzier, Roman ;
Roseau, Gilles ;
Thomassin-Naggara, Isabelle ;
Darai, Emile .
FERTILITY AND STERILITY, 2009, 92 (06) :1825-1833
[10]  
Bossuyt PM, 2015, BMJ-BRIT MED J, V351, DOI [10.1136/bmj.h5527, 10.1373/clinchem.2015.246280, 10.1148/radiol.2015151516]