Quantum interference in polyenes

被引:53
作者
Tsuji, Yuta [1 ]
Hoffmann, Roald [1 ]
Movassagh, Ramis [2 ,3 ]
Datta, Supriyo [4 ]
机构
[1] Cornell Univ, Baker Lab, Dept Chem & Chem Biol, Ithaca, NY 14853 USA
[2] Northeastern Univ, Dept Math, Boston, MA 02115 USA
[3] MIT, Dept Math, Cambridge, MA 02139 USA
[4] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
基金
日本学术振兴会; 美国国家科学基金会;
关键词
SINGLE-MOLECULE CONDUCTANCE; JUNCTION CONDUCTANCE; TRANSPORT-PROPERTIES; ELECTRON-TRANSPORT; CHARGE-TRANSPORT; ORBITAL CONTROL; BOND LENGTHS; AROMATICITY; ALTERNATION; DEPENDENCE;
D O I
10.1063/1.4903043
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The explicit form of the zeroth Green's function in the Huckel model, approximated by the negative of the inverse of the Huckel matrix, has direct quantum interference consequences for molecular conductance. We derive a set of rules for transmission between two electrodes attached to a polyene, when the molecule is extended by an even number of carbons at either end (transmission unchanged) or by an odd number of carbons at both ends (transmission turned on or annihilated). These prescriptions for the occurrence of quantum interference lead to an unexpected consequence for switches which realize such extension through electrocyclic reactions: for some specific attachment modes the chemically closed ring will be the ON position of the switch. Normally the signs of the entries of the Green's function matrix are assumed to have no physical significance; however, we show that the signs may have observable consequences. In particular, in the case of multiple probe attachments - if coherence in probe connections can be arranged - in some cases new destructive interference results, while in others one may have constructive interference. One such case may already exist in the literature. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:13
相关论文
共 95 条
[1]  
Alvarez S., 1993, TABLES PARAMETERS EX
[2]  
Aono S., 2003, INTERNET ELECT J MOL, V2, P358
[3]   Single-molecule junctions beyond electronic transport [J].
Aradhya, Sriharsha V. ;
Venkataraman, Latha .
NATURE NANOTECHNOLOGY, 2013, 8 (06) :399-410
[4]   Dissecting Contact Mechanics from Quantum Interference in Single-Molecule Junctions of Stilbene Derivatives [J].
Aradhya, Sriharsha V. ;
Meisner, Jeffrey S. ;
Krikorian, Markrete ;
Ahn, Seokhoon ;
Parameswaran, Radha ;
Steigerwald, Michael L. ;
Nuckolls, Colin ;
Venkataraman, Latha .
NANO LETTERS, 2012, 12 (03) :1643-1647
[5]   Signatures of Quantum Interference Effects on Charge Transport Through a Single Benzene Ring [J].
Arroyo, Carlos R. ;
Tarkuc, Simge ;
Frisenda, Riccardo ;
Seldenthuis, Johannes S. ;
Woerde, Charlotte H. M. ;
Eelkema, Rienk ;
Grozema, Ferdinand C. ;
van der Zant, Herre S. J. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (11) :3152-3155
[6]   Controlling quantum transport through a single molecule [J].
Cardamone, David M. ;
Stafford, Charles A. ;
Mazumdar, Sumit .
NANO LETTERS, 2006, 6 (11) :2422-2426
[7]   A Huckel study of the effect of a molecular resonance cavity on the quantum conductance of an alkene wire [J].
Collepardo-Guevara, R ;
Walter, D ;
Neuhauser, D ;
Baer, R .
CHEMICAL PHYSICS LETTERS, 2004, 393 (4-6) :367-371
[8]   GRAPH THEORY AND MOLECULAR-ORBITALS .7. ROLE OF RESONANCE STRUCTURES [J].
CVETKOVIC, D ;
GUTMAN, I ;
TRINAJSTIC, N .
JOURNAL OF CHEMICAL PHYSICS, 1974, 61 (07) :2700-2706
[9]   Nanoscale device modeling: the Green's function method [J].
Datta, S .
SUPERLATTICES AND MICROSTRUCTURES, 2000, 28 (04) :253-278
[10]  
Datta S., 2013, Quantum Transport: atom to Transistor