Resource Competition Shapes the Response of Genetic Circuits

被引:174
作者
Qian, Yili [1 ]
Huang, Hsin-Ho [1 ]
Jimenez, Jose I. [1 ,2 ]
Del Vecchio, Domitilla [1 ,3 ]
机构
[1] MIT, Dept Mech Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Univ Surrey, Fac Hlth Med Sci, Guildford GU2 7XH, Surrey, England
[3] MIT, Synthet Biol Ctr, 500 Technol Sq, Cambridge, MA 02139 USA
基金
英国生物技术与生命科学研究理事会;
关键词
genetic circuit; context dependence; modularity; resource competition; model-guided design; activation cascade; ESCHERICHIA-COLI; SYNTHETIC BIOLOGY; EXPRESSION; TRANSCRIPTION; CONTEXT; RETROACTIVITY; MODULARITY; PROTEINS; DYNAMICS; LOAD;
D O I
10.1021/acssynbio.6b00361
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A common approach to design genetic circuits is to compose gene expression cassettes together. While appealing, this modular approach is challenged by the fact that expression of each gene depends on the availability of transcriptional/translational resources, which is in turn determined by the presence of other genes in the circuit. This raises the question of how competition for resources by different genes affects a circuits behavior. Here, we create a library of genetic activation cascades in E. coli bacteria, where we explicitly tune the resource demand by each gene. We develop a general Hill-function-based model that incorporates resource competition effects through resource demand coefficients. These coefficients lead to nonregulatory interactions among genes that reshape the circuits behavior. For the activation cascade, such interactions result in surprising biphasic or monotonically decreasing responses. Finally, we use resource demand coefficients to guide the choice of ribosome binding site and DNA copy number to restore the cascades intended monotonically increasing response. Our results demonstrate how unintended circuits behavior arises from resource competition and provide a model-guided methodology to minimize the resulting effects.
引用
收藏
页码:1263 / 1272
页数:10
相关论文
共 44 条
[1]  
Alon Uri, 2006, An Introduction to Systems Biology: Design Principles of Biological Circuits
[2]   Synthesis of orthogonal transcription-translation networks [J].
An, Wenlin ;
Chin, Jason W. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (21) :8477-8482
[3]  
[Anonymous], 2005, P INT C ADV NEUR INF
[4]   A mutational analysis defines Vibrio fischeri LuxR binding sites [J].
Antunes, Luis Caetano M. ;
Ferreira, Rosana B. R. ;
Lostroh, C. Phoebe ;
Greenberg, E. Peter .
JOURNAL OF BACTERIOLOGY, 2008, 190 (13) :4392-4397
[5]   Insulating gene circuits from context by RNA processing [J].
Bashor, Caleb J. ;
Collins, James J. .
NATURE BIOTECHNOLOGY, 2012, 30 (11) :1061-1062
[6]  
Bremer H., 1996, ESCHERICHIA COLI SAL
[7]  
Brophy JAN, 2014, NAT METHODS, V11, P508, DOI [10.1038/NMETH.2926, 10.1038/nmeth.2926]
[8]  
Canton B., 2008, THESIS
[9]   Dealing with the genetic load in bacterial synthetic biology circuits: convergences with the Ohm's law [J].
Carbonell-Ballestero, M. ;
Garcia-Ramallo, E. ;
Montanez, R. ;
Rodriguez-Caso, C. ;
Macia, J. .
NUCLEIC ACIDS RESEARCH, 2016, 44 (01) :496-507
[10]   Contextualizing context for synthetic biology - identifying causes of failure of synthetic biological systems [J].
Cardinale, Stefano ;
Arkin, Adam Paul .
BIOTECHNOLOGY JOURNAL, 2012, 7 (07) :856-866