Local approximation of uniformly regular Carnot-Caratheodory quasispaces by their tangent cones

被引:14
作者
Greshnov, A. V. [1 ]
机构
[1] Sobolev Inst Math, Novosibirsk, Russia
基金
俄罗斯基础研究基金会;
关键词
Carnot-Caratheodory space; quasimetric; nilpotent group; local approximation theorem; Gromov-Hausdorff convergence;
D O I
10.1007/s11202-007-0024-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a local approximation theorem for the Carnot-Caratheodory quasimetrics on uniformly regular (equiregular) Carnot-Caratheodory spaces. Using this theorem, we study convergence of the Carnot-Caratheodory quasispaces to their tangent cones. In particular, we prove a Mitchell type theorem on convergence of an equiregular Carnot-Caratheodory quasispace with distinguished point to its tangent cone.
引用
收藏
页码:229 / 248
页数:20
相关论文
共 30 条
[1]  
[Anonymous], 2002, AM MATH SOC
[2]  
[Anonymous], 1996, PROGR MATH
[3]  
Bellaiche A., 1996, Sub-Riemannian Geometry, Progress in Mathematics, P1, DOI [10.1007/978-3-0348-9210-0, DOI 10.1007/978-3-0348-9210-0, 10.1007/978-3-0348-9210-0\\1]
[4]  
BYRAGO DY, 2004, COURSE METRIC GEOMET
[5]  
Capogna L, 1995, CR ACAD SCI I-MATH, V321, P1565
[6]   Boundary behavior of nonnegative solutions of subelliptic equations in NTA domains for Carnot-Caratheodory metrics [J].
Capogna, L ;
Garofalo, N .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1998, 4 (4-5) :403-432
[7]  
Folland G.B., 1982, MATH NOTES+, V28
[8]   Metrics and tangent cones of uniformly regular Carnot-Caratheodory spaces [J].
Greshnov, AV .
SIBERIAN MATHEMATICAL JOURNAL, 2006, 47 (02) :209-238
[9]  
GROMOV M, 1981, CEDIC
[10]  
GROMOV M, 1981, I HAUTES ETUDES SCI, V53, P53, DOI 10.1007/BF02698687