An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design

被引:192
作者
Zhao, Yongping [1 ]
Zhang, Congsheng [1 ,2 ]
Liu, Wenwen [1 ]
Gao, Wei [1 ]
Liu, Changlin [1 ]
Song, Gaoyuan [1 ]
Li, Wen-Xue [1 ]
Mao, Long [1 ]
Chen, Beijiu [2 ]
Xu, Yunbi [1 ]
Li, Xinhai [1 ]
Xie, Chuanxiao [1 ]
机构
[1] Chinese Acad Agr Sci, Inst Crop Sci, Natl Key Facil Crop Gene Resources & Genet Improv, Beijing 100081, Peoples R China
[2] Anhui Agr Univ, Hefei 230036, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
AGROBACTERIUM-MEDIATED TRANSFORMATION; HOMOLOGOUS RECOMBINATION; GENOME MODIFICATION; T-DNA; ARABIDOPSIS; MUTAGENESIS; RNA; CRISPR/CAS9; RICE; NUCLEASE;
D O I
10.1038/srep23890
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Precision DNA/gene replacement is a promising genome-editing tool that is highly desirable for molecular engineering and breeding by design. Although the CRISPR/Cas9 system works well as a tool for gene knockout in plants, gene replacement has rarely been reported. Towards this end, we first designed a combinatory dual-sgRNA/Cas9 vector (construct #1) that successfully deleted miRNA gene regions (MIR169a and MIR827a). The deletions were confirmed by PCR and subsequent sequencing, yielding deletion efficiencies of 20% and 24% on MIR169a and MIR827a loci, respectively. We designed a second structure (construct #2) that contains sites homologous to Arabidopsis TERMINAL FLOWER 1 (TFL1) for homology-directed repair (HDR) with regions corresponding to the two sgRNAs on the modified construct #1. The two constructs were co-transformed into Arabidopsis plants to provide both targeted deletion and donor repair for targeted gene replacement by HDR. Four of 500 stably transformed T0 transgenic plants (0.8%) contained replaced fragments. The presence of the expected recombination sites was further confirmed by sequencing. Therefore, we successfully established a gene deletion/replacement system in stably transformed plants that can potentially be utilized to introduce genes of interest for targeted crop improvement.
引用
收藏
页数:11
相关论文
共 45 条
[1]   T-DNA insertion mutagenesis in Arabidopsis: Going back and forth [J].
AzpirozLeehan, R ;
Feldmann, KA .
TRENDS IN GENETICS, 1997, 13 (04) :152-156
[2]   Creation of targeted genomic deletions using TALEN or CRISPR/Cas nuclease pairs in one-cell mouse embryos [J].
Brandl, Christina ;
Ortiz, Oskar ;
Roettig, Bernhard ;
Wefers, Benedikt ;
Wurst, Wolfgang ;
Kuehn, Ralf .
FEBS OPEN BIO, 2015, 5 :26-35
[3]   Characterization of Genomic Deletion Efficiency Mediated by Clustered Regularly Interspaced Palindromic Repeats (CRISPR)/Cas9 Nuclease System in Mammalian Cells [J].
Canver, Matthew C. ;
Bauer, Daniel E. ;
Dass, Abhishek ;
Yien, Yvette Y. ;
Chung, Jacky ;
Masuda, Takeshi ;
Maeda, Takahiro ;
Paw, Barry H. ;
Orkin, Stuart H. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2014, 289 (31) :21312-21324
[4]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[5]   Multiplex Genome Engineering Using CRISPR/Cas Systems [J].
Cong, Le ;
Ran, F. Ann ;
Cox, David ;
Lin, Shuailiang ;
Barretto, Robert ;
Habib, Naomi ;
Hsu, Patrick D. ;
Wu, Xuebing ;
Jiang, Wenyan ;
Marraffini, Luciano A. ;
Zhang, Feng .
SCIENCE, 2013, 339 (6121) :819-823
[6]   Megabase-scale deletion using CRISPR/Cas9 to generate a fully haploid human cell line [J].
Essletzbichler, Patrick ;
Konopka, Tomasz ;
Santoro, Federica ;
Chen, Doris ;
Gapp, Bianca V. ;
Kralovics, Robert ;
Brummelkamp, Thijn R. ;
Nijman, Sebastian M. B. ;
Buerckstuemmer, Tilmann .
GENOME RESEARCH, 2014, 24 (12) :2059-2065
[7]   Efficient CRISPR/Cas9-mediated Targeted Mutagenesis in Populus in the First Generation [J].
Fan, Di ;
Liu, Tingting ;
Li, Chaofeng ;
Jiao, Bo ;
Li, Shuang ;
Hou, Yishu ;
Luo, Keming .
SCIENTIFIC REPORTS, 2015, 5
[8]   Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana [J].
Fauser, Friedrich ;
Schiml, Simon ;
Puchta, Holger .
PLANT JOURNAL, 2014, 79 (02) :348-359
[9]   Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis [J].
Feng, Zhengyan ;
Mao, Yanfei ;
Xu, Nanfei ;
Zhang, Botao ;
Wei, Pengliang ;
Yang, Dong-Lei ;
Wang, Zhen ;
Zhang, Zhengjing ;
Zheng, Rui ;
Yang, Lan ;
Zeng, Liang ;
Liu, Xiaodong ;
Zhu, Jian-Kang .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (12) :4632-4637
[10]   Efficient genome editing in plants using a CRISPR/Cas system [J].
Feng, Zhengyan ;
Zhang, Botao ;
Ding, Wona ;
Liu, Xiaodong ;
Yang, Dong-Lei ;
Wei, Pengliang ;
Cao, Fengqiu ;
Zhu, Shihua ;
Zhang, Feng ;
Mao, Yanfei ;
Zhu, Jian-Kang .
CELL RESEARCH, 2013, 23 (10) :1229-1232