On the crossing numbers of Cartesian products with paths

被引:42
作者
Bokal, Drago [1 ]
机构
[1] Inst Math Phys & Mech, Dept Math, Ljubljana, Slovenia
关键词
crossing number; Cartesian product; path;
D O I
10.1016/j.jctb.2006.06.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using a newly introduced operation on graphs and its counterpart on graph drawings, we prove the conjecture of Jendrol' and Scerbova from 1982 about the crossing number of the Cartesian product K-1,K-m 11 rectangle P-n. Our approach is applicable to the capped Cartesian products of P-n with any graph containing a dominating vertex. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:381 / 384
页数:4
相关论文
共 10 条
[1]   ON THE CROSSING NUMBERS OF PRODUCTS OF CYCLES AND GRAPHS OF ORDER 4 [J].
BEINEKE, LW ;
RINGEISEN, RD .
JOURNAL OF GRAPH THEORY, 1980, 4 (02) :145-155
[2]  
BOKAL D, 2006, THESIS U LJUBLJANA
[3]   The crossing number of Cm x Cn is as conjectured for n≥m(m+1) [J].
Glebsky, LY ;
Salazar, G .
JOURNAL OF GRAPH THEORY, 2004, 47 (01) :53-72
[4]  
JENDROL S, 1982, CASOPIS PRO PESTOVAN, V107, P225
[5]  
Kleitman D. J., 1970, Journal of Combinatorial Theory, Series A, V9, P315, DOI 10.1016/S0021-9800(70)80087-4
[6]   The crossing number of K2,3 x C3 [J].
Klesc, M .
DISCRETE MATHEMATICS, 2002, 251 (1-3) :109-117
[7]  
KLESC M, 1991, MATH SLOVACA, V41, P113
[8]   CROSSING NUMBER OF C3 X CN [J].
RINGEISEN, RD ;
BEINEKE, LW .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1978, 24 (02) :134-136
[9]   Infinite families of crossing-critical graphs with given average degree [J].
Salazar, G .
DISCRETE MATHEMATICS, 2003, 271 (1-3) :343-350
[10]  
WHITE AT, 1978, SELECTED TOPICS GRAP, P15