High-entropy materials for catalysis: A new frontier

被引:534
|
作者
Sun, Yifan [1 ]
Dai, Sheng [1 ,2 ]
机构
[1] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA
[2] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA
关键词
SOLID-SOLUTION ELECTROCATALYSTS; HYDROGEN EVOLUTION; OXYGEN REDUCTION; MULTIELEMENT NANOPARTICLES; SPUTTER-DEPOSITION; METAL-CATALYSTS; ALLOY; TEMPERATURE; DESIGN; OXIDES;
D O I
10.1126/sciadv.abg1600
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Entropy plays a pivotal role in catalysis, and extensive research efforts have been directed to understanding the enthalpy-entropy relationship that defines the reaction pathways of molecular species. On the other side, surface of the catalysts, entropic effects have been rarely investigated because of the difficulty in deciphering the increased complexities in multicomponent systems. Recent advances in high-entropy materials (HEMs) have triggered broad interests in exploring entropy-stabilized systems for catalysis, where the enhanced configurational entropy affords a virtually unlimited scope for tailoring the structures and properties of HEMs. In this review, we summarize recent progress in the discovery and design of HEMs for catalysis. The correlation between compositional and structural engineering and optimization of the catalytic behaviors is highlighted for high-entropy alloys, oxides, and beyond. Tuning composition and configuration of HEMs introduces untapped opportunities for accessing better catalysts and resolving issues that are considered challenging in conventional, simple systems.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] High-entropy materials for energy and electronic applications
    Schweidler, Simon
    Botros, Miriam
    Strauss, Florian
    Wang, Qingsong
    Ma, Yanjiao
    Velasco, Leonardo
    Marques, Gabriel Cadilha
    Sarkar, Abhishek
    Kuebel, Christian
    Hahn, Horst
    Aghassi-Hagmann, Jasmin
    Brezesinski, Torsten
    Breitung, Ben
    NATURE REVIEWS MATERIALS, 2024, 9 (04) : 266 - 281
  • [2] Sustainable high-entropy materials?
    Han, Liuliu
    Mu, Wangzhong
    Wei, Shaolou
    Liaw, Peter K.
    Raabe, Dierk
    SCIENCE ADVANCES, 2024, 10 (50):
  • [3] High-Entropy Perovskite Fluorides: A New Platform for Oxygen Evolution Catalysis
    Wang, Tao
    Chen, Hao
    Yang, Zhenzhen
    Liang, Jiyuan
    Dai, Sheng
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (10) : 4550 - 4554
  • [4] High-entropy oxides for catalysis: A diamond in the rough
    Pan, Yingtong
    Liu, Ji-Xuan
    Tu, Tian-Zhe
    Wang, Wenzhong
    Zhang, Guo-Jun
    CHEMICAL ENGINEERING JOURNAL, 2023, 451
  • [5] High-entropy materials
    George, Easo P.
    Ritchie, Robert O.
    MRS BULLETIN, 2022, 47 (02) : 145 - 150
  • [6] High-entropy compounds for photo(electro)catalysis: diverse materials and applications
    Shan, Bao-Feng
    Yang, Jian
    Xiang, Xianglin
    Zhao, Zong-Yan
    JOURNAL OF MATERIALS CHEMISTRY A, 2025,
  • [7] High-entropy energy materials: challenges and new opportunities
    Ma, Yanjiao
    Ma, Yuan
    Wang, Qingsong
    Schweidler, Simon
    Botros, Miriam
    Fu, Tongtong
    Hahn, Horst
    Brezesinski, Torsten
    Breitung, Ben
    ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (05) : 2883 - 2905
  • [8] Nanostructured high-entropy materials
    Hache, Michel J. R.
    Cheng, Changjun
    Zou, Yu
    JOURNAL OF MATERIALS RESEARCH, 2020, 35 (08) : 1051 - 1075
  • [9] Multifunctional high-entropy materials
    Han, Liuliu
    Zhu, Shuya
    Rao, Ziyuan
    Scheu, Christina
    Ponge, Dirk
    Ludwig, Alfred
    Zhang, Hongbin
    Gutfleisch, Oliver
    Hahn, Horst
    Li, Zhiming
    Raabe, Dierk
    NATURE REVIEWS MATERIALS, 2024, : 846 - 865
  • [10] High-Entropy Photothermal Materials
    He, Cheng-Yu
    Li, Yang
    Zhou, Zhuo-Hao
    Liu, Bao-Hua
    Gao, Xiang-Hu
    ADVANCED MATERIALS, 2024, 36 (24)