Stability and instability of standing waves for the fractional nonlinear Schrodinger equations

被引:6
作者
Feng, Binhua [1 ]
Zhu, Shihui [2 ]
机构
[1] Northwest Normal Univ, Dept Math, Lanzhou 730070, Peoples R China
[2] Sichuan Normal Univ, Sch Math Sci, Chengdu 610066, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional Schrodinger equation; Combined power-type nonlinearities; Orbital stability; Strong instability; BLOW-UP; SOLITARY WAVES; STATES;
D O I
10.1016/j.jde.2021.05.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we make a comprehensive study for the orbital stability of standing waves for the fractional Schrodinger equation with combined power-type nonlinearities partial derivative(t)psi - (-Delta)(s)psi + a vertical bar psi vertical bar(p1) psi + vertical bar psi vertical bar(p)(2)psi = 0. We prove that when p(2) = 4s/N and a(p(1) - 4s/N) < 0, there exist the standing waves of (FNLS), which are orbitally stable. When a = 0 and 4s/N < p(2) < 4s/N-2s we present a new, simpler method to study the strong instability of standing waves. When a = - 1, 0 < p(1) < p(2) and 4s/N <= p(2) < 4s/N - 2s, or a = 1 and 4s/N <= p(1) < p(2) < 4s/N-2s or a = 1, 0 < p(1) < 4s/N < p(2) < 4s/N - 2s and partial derivative(2)(lambda) S-omega (u(omega)(lambda))vertical bar(lambda=1 )<= 0, we deduce that the ground state standing waves of (FNLS) are strongly unstable by blow-up. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:287 / 324
页数:38
相关论文
共 46 条
[1]   On stability and instability of standing waves for the nonlinear Schrodinger equation with an inverse-square potential [J].
Bensouilah, Abdelwahab ;
Van Duong Dinh ;
Zhu, Shihui .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (10)
[2]  
BERESTYCKI H, 1981, CR ACAD SCI I-MATH, V293, P489
[3]   On fractional Schrodinger systems of Choquard type [J].
Bhattarai, Santosh .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (06) :3197-3229
[4]   Blowup for fractional NLS [J].
Boulenger, Thomas ;
Himmelsbach, Dominik ;
Lenzmann, Enno .
JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (09) :2569-2603
[5]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[6]   ORBITAL STABILITY OF STANDING WAVES FOR SOME NON-LINEAR SCHRODING EQUATIONS [J].
CAZENAVE, T ;
LIONS, PL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 85 (04) :549-561
[7]  
Cazenave T., 2003, Courant Lecture Notes, Amer. Math. Soc, V10, P346
[8]   ON THE ORBITAL STABILITY OF FRACTIONAL SCHRODINGER EQUATIONS [J].
Cho, Yonggeun ;
Hajaiej, Hichem ;
Hwang, Gyeongha ;
Ozawa, Tohru .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (03) :1267-1282
[9]  
Dinh V. D., 2018, Int. J. Appl. Math., V31, P483
[10]   Global well-posedness and blow-up on the energy space for the inhomogeneous nonlinear Schrodinger equation [J].
Farah, Luiz G. .
JOURNAL OF EVOLUTION EQUATIONS, 2016, 16 (01) :193-208