Quantum hydrodynamic models from a maximum entropy principle

被引:9
作者
Trovato, M. [1 ]
Reggiani, L. [2 ,3 ]
机构
[1] Univ Catania, Dipartimento Matemat, I-95125 Catania, Italy
[2] Univ Salento, Dipartimento Ingn Innovaz, I-73100 Lecce, Italy
[3] Univ Salento, CNISM, I-73100 Lecce, Italy
关键词
D O I
10.1088/1751-8113/43/10/102001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use a density matrix formalism to derive a kinetic theory for a quantum gas. Generalized kinetic fields are introduced and, employing the Wigner function, a certain hierarchy of quantum hydrodynamic (QHD) equations for the corresponding macroscopic variables is obtained. We assert a maximum entropy principle to obtain closure of the QHD system. For the explicit incorporation of statistics a proper quantum entropy is analyzed in terms of the reduced density matrix. The determination of the reduced Wigner function for equilibrium and non-equilibrium conditions is found to become possible only by assuming that the Lagrange multipliers can be expanded in powers of (h) over bar (2). Quantum contributions are expressed in powers of (h) over bar (2) while classical results are recovered in the limit (h) over bar -> 0.
引用
收藏
页数:11
相关论文
共 50 条
[41]   The Latent Maximum Entropy Principle [J].
Wang, Shaojun ;
Schuurmans, Dale ;
Zhao, Yunxin .
ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2012, 6 (02)
[42]   Metasystems and the maximum entropy principle [J].
Pittarelli, M .
INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 1996, 24 (1-2) :191-206
[43]   THE PRINCIPLE OF MAXIMUM-ENTROPY [J].
GUIASU, S ;
SHENITZER, A .
MATHEMATICAL INTELLIGENCER, 1985, 7 (01) :42-48
[44]   Generalized maximum entropy principle [J].
Kesavan, H.K., 1600, (19)
[45]   The latent maximum entropy principle [J].
Wang, SJ ;
Rosenfeld, R ;
Zhao, YX ;
Schuurmans, D .
ISIT: 2002 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2002, :131-131
[46]   IMPLICATIONS OF THE ENTROPY MAXIMUM PRINCIPLE [J].
KAZES, E ;
CUTLER, PH .
AMERICAN JOURNAL OF PHYSICS, 1988, 56 (06) :560-561
[47]   Maximum entropy principle revisited [J].
Wolfgang Dreyer ;
Matthias Kunik .
Continuum Mechanics and Thermodynamics, 1998, 10 :331-347
[48]   Venus atmosphere profile from a maximum entropy principle [J].
Epele, L. N. ;
Fanchiotti, H. ;
Garcia Canal, C. A. ;
Pacheco, A. F. ;
Sanudo, J. .
NONLINEAR PROCESSES IN GEOPHYSICS, 2007, 14 (05) :641-647
[49]   Statistical Distributions "generalized" from the principle of maximum entropy [J].
Sotolongo-Costa, O. ;
Gonzalez, A. ;
Brouers, F. .
REVISTA CUBANA DE FISICA, 2009, 26 (2B) :262-266
[50]   Statistical equilibrium of tetrahedra from maximum entropy principle [J].
Chirco, Goffredo ;
Kotecha, Isha ;
Oriti, Daniele .
PHYSICAL REVIEW D, 2019, 99 (08)