Quantum hydrodynamic models from a maximum entropy principle

被引:9
作者
Trovato, M. [1 ]
Reggiani, L. [2 ,3 ]
机构
[1] Univ Catania, Dipartimento Matemat, I-95125 Catania, Italy
[2] Univ Salento, Dipartimento Ingn Innovaz, I-73100 Lecce, Italy
[3] Univ Salento, CNISM, I-73100 Lecce, Italy
关键词
D O I
10.1088/1751-8113/43/10/102001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use a density matrix formalism to derive a kinetic theory for a quantum gas. Generalized kinetic fields are introduced and, employing the Wigner function, a certain hierarchy of quantum hydrodynamic (QHD) equations for the corresponding macroscopic variables is obtained. We assert a maximum entropy principle to obtain closure of the QHD system. For the explicit incorporation of statistics a proper quantum entropy is analyzed in terms of the reduced density matrix. The determination of the reduced Wigner function for equilibrium and non-equilibrium conditions is found to become possible only by assuming that the Lagrange multipliers can be expanded in powers of (h) over bar (2). Quantum contributions are expressed in powers of (h) over bar (2) while classical results are recovered in the limit (h) over bar -> 0.
引用
收藏
页数:11
相关论文
共 50 条
[21]   Quantum entanglement inferred by the principle of maximum nonadditive entropy [J].
Abe, S ;
Rajagopal, AK .
PHYSICAL REVIEW A, 1999, 60 (05) :3461-3466
[22]   Quantum Maximum Entropy Principle for Fractional Exclusion Statistics [J].
Trovato, M. ;
Reggiani, L. .
PHYSICAL REVIEW LETTERS, 2013, 110 (02)
[23]   Quantum entanglement inferred by the principle of maximum nonadditive entropy [J].
Abe, Sumiyoshi ;
Rajagopal, A.K. .
Physical Review A - Atomic, Molecular, and Optical Physics, 1999, 60 (05) :3461-3466
[24]   Quantum maximum entropy principle for a system of identical particles [J].
Trovato, M. ;
Reggiani, L. .
PHYSICAL REVIEW E, 2010, 81 (02)
[25]   Numerical Simulation of a Hydrodynamic Subband Model for Semiconductors Based on the Maximum Entropy Principle [J].
Mascali, G. ;
Romano, V. .
SCIENTIFIC COMPUTING IN ELECTRICAL ENGINEERING (SCEE 2010), 2012, 16 :339-346
[26]   Quantum Maximum Entropy Principle and the Moments of the Generalized Wigner Function [J].
Trovato, M. ;
Reggiani, L. .
16TH INTERNATIONAL CONFERENCE ON ELECTRON DYNAMICS IN SEMICONDUCTORS, OPTOELECTRONICS AND NANOSTRUCTURES (EDISON 16), 2009, 193
[27]   Entropy production from maximum entropy principle: A unifying approach [J].
Varizi, Adalberto D. ;
Correia, Pedro S. .
PHYSICAL REVIEW E, 2024, 110 (02)
[28]   Weak scale from the maximum entropy principle [J].
Hamada, Yuta ;
Kawai, Hikaru ;
Kawana, Kiyoharu .
PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2015, 2015 (03)
[29]   Superstatistical distributions from a maximum entropy principle [J].
Van der Straeten, Erik ;
Beck, Christian .
PHYSICAL REVIEW E, 2008, 78 (05)
[30]   Gravitational potential from maximum entropy principle [J].
Roupas, Zacharias .
CLASSICAL AND QUANTUM GRAVITY, 2020, 37 (09)