MicroRNA-21 regulates right ventricular remodeling secondary to pulmonary arterial pressure overload

被引:11
作者
Chang, Wei-Ting [1 ,2 ,3 ]
Fisch, Sudeshna [4 ]
Dangwal, Seema [4 ,5 ]
Mohebali, Jahan [6 ,7 ,8 ]
Fiedler, Amy G. [6 ]
Chen, Michael [1 ]
Hsu, Chih-Hsin [5 ,9 ]
Yang, Yanfei [4 ]
Qiu, Yiling [4 ]
Alexander, Kevin M. [5 ]
Chen, Frederick Y. [10 ]
Liao, Ronglih [4 ,5 ]
机构
[1] Natl Cheng Kung Univ, Coll Med, Inst Clin Med, Tainan, Taiwan
[2] Chi Mei Med Ctr, Dept Cardiol, Tainan, Taiwan
[3] Southern Taiwan Univ Sci & Technol, Dept Biotechnol, Tainan, Taiwan
[4] Harvard Med Sch, Brigham & Womens Hosp, Dept Med, Boston, MA 02115 USA
[5] Stanford Univ, Sch Med, Dept Med, Stanford Cardiovasc Inst, Stanford, CA 94305 USA
[6] Brigham & Womens Hosp, Div Cardiac Surg, 75 Francis St, Boston, MA 02115 USA
[7] Massachusetts Gen Hosp, Div Vasc & Endovasc Surg, Boston, MA 02114 USA
[8] Harvard Med Sch, Boston, MA 02115 USA
[9] Cheng Kung Univ Hosp, Dept Intens Care Med, Tainan, Taiwan
[10] Tufts Med Ctr, Div Cardiac Surg, Cardiovasc Ctr, Boston, MA 02111 USA
关键词
miRNA-21; Pulmonary hypertension; Right ventricular dysfunction; HEART; MECHANISM; SOCIETY; DISEASE; FLOW;
D O I
10.1016/j.yjmcc.2021.01.003
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Right ventricular (RV) function is a critical determinant of survival in patients with pulmonary arterial hypertension (PAH). While miR-21 is known to associate with vascular remodeling in small animal models of PAH, its role in RV remodeling in large animal models has not been characterized. Herein, we investigated the role of miR-21 in RV dysfunction using a sheep model of PAH secondary to pulmonary arterial constriction (PAC). RV structural and functional remodeling were examined using ultrasound imaging. Our results showed that post PAC, RV strain significantly decreased at the basal region compared with t the control. Moreover, such dysfunction was accompanied by increases in miR-21 levels. To determine the role of miR-21 in RV remodeling secondary to PAC, we investigated the molecular alteration secondary to phenylephrine induced hypertrophy and miR21 overexpression in vitro using neonatal rat ventricular myocytes (NRVMs). We found that overexpression of miR-21 in the setting of hypertrophic stimulation augmented only the expression of proteins critical for mitosis but not cytokinesis. Strikingly, this molecular alteration was associated with an eccentric cellular hypertrophic phenotype similar to what we observed in vivo PAC animal model in sheep. Importantly, this hypertrophic change was diminished upon suppressing miR-21 in NRVMs. Collectively, our in vitro and in vivo data demonstrate that miR-21 is a critical contributor in the development of RV dysfunction and could represent a novel therapeutic target for PAH associated RV dysfunction.
引用
收藏
页码:106 / 114
页数:9
相关论文
共 34 条
  • [1] Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy
    Bang, Claudia
    Batkai, Sandor
    Dangwal, Seema
    Gupta, Shashi Kumar
    Foinquinos, Ariana
    Holzmann, Angelika
    Just, Annette
    Remke, Janet
    Zimmer, Karina
    Zeug, Andre
    Ponimaskin, Evgeni
    Schmiedl, Andreas
    Yin, Xiaoke
    Mayr, Manuel
    Halder, Rashi
    Fischer, Andre
    Engelhardt, Stefan
    Wei, Yuanyuan
    Schober, Andreas
    Fiedler, Jan
    Thum, Thomas
    [J]. JOURNAL OF CLINICAL INVESTIGATION, 2014, 124 (05) : 2136 - 2146
  • [2] Haemodynamically dependent valvulogenesis of zebrafish heart is mediated by flow-dependent expression of miR-21
    Banjo, Toshihiro
    Grajcarek, Janin
    Yoshino, Daisuke
    Osada, Hideto
    Miyasaka, Kota Y.
    Kida, Yasuyuki S.
    Ueki, Yosuke
    Nagayama, Kazuaki
    Kawakami, Koichi
    Matsumoto, Takeo
    Sato, Masaaki
    Ogura, Toshihiko
    [J]. NATURE COMMUNICATIONS, 2013, 4
  • [3] MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004)
    Bartel, David P.
    [J]. CELL, 2007, 131 (04) : 11 - 29
  • [4] MicroRNAs in pulmonary arterial hypertension: pathogenesis, diagnosis and treatment
    Bienertova-Vasku, Julie
    Novak, Jan
    Vasku, Anna
    [J]. JOURNAL OF THE AMERICAN SOCIETY OF HYPERTENSION, 2015, 9 (03) : 221 - 234
  • [5] Buscaglia Lindsey E Becker, 2011, Chin J Cancer, V30, P371
  • [6] MicroRNA-21 in Cardiovascular Disease
    Cheng, Yunhui
    Zhang, Chunxiang
    [J]. JOURNAL OF CARDIOVASCULAR TRANSLATIONAL RESEARCH, 2010, 3 (03) : 251 - 255
  • [7] PKC δ and βII regulate angiotensin II-mediated fibrosis through p38: a mechanism of RV fibrosis in pulmonary hypertension
    Chichger, Havovi
    Vang, Alexander
    O'Connell, Kelly A.
    Zhang, Peng
    Mende, Ulrike
    Harrington, Elizabeth O.
    Choudhary, Gaurav
    [J]. AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY, 2015, 308 (08) : L827 - L836
  • [8] 4-D blood flow in the human right ventricle
    Fredriksson, Alexandru G.
    Zajac, Jakub
    Eriksson, Jonatan
    Dyverfeldt, Petter
    Bolger, Ann F.
    Ebbers, Tino
    Carlhall, Carl-Johan
    [J]. AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2011, 301 (06): : H2344 - H2350
  • [9] Right ventricular function in cardiovascular disease, part I - Anatomy, physiology, aging, and functional assessment of the right ventricle
    Haddad, Francois
    Hunt, Sharon A.
    Rosenthal, David N.
    Murphy, Daniel J.
    [J]. CIRCULATION, 2008, 117 (11) : 1436 - 1448
  • [10] Extracellular Signal-Regulated Kinases 1 and 2 Regulate the Balance Between Eccentric and Concentric Cardiac Growth
    Kehat, Izhak
    Davis, Jennifer
    Tiburcy, Malte
    Accornero, Federica
    Saba-El-Leil, Marc K.
    Maillet, Marjorie
    York, Allen J.
    Lorenz, John N.
    Zimmermann, Wolfram H.
    Meloche, Sylvain
    Molkentin, Jeffery D.
    [J]. CIRCULATION RESEARCH, 2011, 108 (02) : 176 - U57