Uncertainty quantification in molecular dynamics studies of the glass transition temperature

被引:87
作者
Patrone, Paul N. [1 ,2 ]
Dienstfrey, Andrew [2 ]
Browning, Andrea R. [3 ]
Tucker, Samuel [3 ]
Christensen, Stephen [3 ]
机构
[1] Univ Minnesota, Inst Math & Its Applicat, Minneapolis, MN 55455 USA
[2] Natl Inst Stand & Technol, Boulder, CO USA
[3] Boeing Co, Seattle, WA USA
基金
美国国家科学基金会;
关键词
Uncertainty quantification; Glass transition temperature; Crosslinked polymers; Molecular dynamics; High-throughput materials-modeling workflow; CROSS-LINKED EPOXY; MECHANICAL-PROPERTIES; THERMOSET POLYMERS; SIMULATIONS; PREDICTION; NETWORKS;
D O I
10.1016/j.polymer.2016.01.074
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The composites industry is increasingly using molecular dynamics (MD) simulations to inform its materials development decisions. As a result, there is growing awareness that simulated predictions require quantitative assessments of their quality in order to routinely provide reliable and actionable information. In the following, we develop a suite of uncertainty quantification (UQ) tools designed to assess simulation-based estimates of the glass transition temperature T-g of polymer systems for aerospace applications. We consider contributions to this uncertainty arising from: (i) identification of asymptotic regimes in density versus temperature relations; (ii) fluctuations associated with limited time-averaging of dynamical noise; (iii) and finite-size effects associated with partial averaging over polymer-network configurations. We present a sequence of analyses by which we assess each of these contributions and quantify their net effect on estimates of T-g. Importantly, these methods suggest more efficient workflows by indicating when multiple small simulations can be combined to yield estimates with uncertainties comparable to larger, more expensive simulations. We expect that related approaches will, in the future, be applicable to other physical quantities of interest as well as to a broader class of computational tools. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:246 / 259
页数:14
相关论文
共 35 条
  • [21] Molecular Simulation of Cross-Linked Epoxy and Epoxy-POSS Nanocomposite
    Lin, Po-Han
    Khare, Rajesh
    [J]. MACROMOLECULES, 2009, 42 (12) : 4319 - 4327
  • [22] Parrinello M., J APPL PHYS, V52
  • [23] Pathria R.K., 1996, Statistical Mechanics, Vsecond, P43, DOI DOI 10.1016/B978-075062469-5/50005-0
  • [24] QUENOUILLE MH, 1956, BIOMETRIKA, V43, P353
  • [25] Uncertainty quantification in MD simulations of concentration driven ionic flow through a silica nanopore. I. Sensitivity to physical parameters of the pore
    Rizzi, F.
    Jones, R. E.
    Debusschere, B. J.
    Knio, O. M.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (19)
  • [26] Uncertainty quantification in MD simulations of concentration driven ionic flow through a silica nanopore. II. Uncertain potential parameters
    Rizzi, F.
    Jones, R. E.
    Debusschere, B. J.
    Knio, O. M.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (19)
  • [27] UNCERTAINTY QUANTIFICATION IN MD SIMULATIONS. PART I: FORWARD PROPAGATION
    Rizzi, F.
    Najm, H. N.
    Debusschere, B. J.
    Sargsyan, K.
    Salloum, M.
    Adalsteinsson, H.
    Knio, O. M.
    [J]. MULTISCALE MODELING & SIMULATION, 2012, 10 (04) : 1428 - 1459
  • [28] UNCERTAINTY QUANTIFICATION IN MD SIMULATIONS. PART II: BAYESIAN INFERENCE OF FORCE-FIELD PARAMETERS
    Rizzi, F.
    Najm, H. N.
    Debusschere, B. J.
    Sargsyan, K.
    Salloum, M.
    Adalsteinsson, H.
    Knio, O. M.
    [J]. MULTISCALE MODELING & SIMULATION, 2012, 10 (04) : 1460 - 1492
  • [29] Weighted means statistics in interlaboratory studies
    Rukhin, Andrew L.
    [J]. METROLOGIA, 2009, 46 (03) : 323 - 331
  • [30] Simple Quantitative Tests to Validate Sampling from Thermodynamic Ensembles
    Shirts, Michael R.
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (02) : 909 - 926