On the Negative Spectrum of One-Dimensional Schrodinger Operators with Point Interactions

被引:14
作者
Goloschapova, N. [1 ]
Oridoroga, L. [2 ]
机构
[1] NAS Ukraine, Inst Appl Math & Mech, UA-83114 Donetsk, Ukraine
[2] Donetsk Natl Univ, UA-83055 Donetsk, Ukraine
关键词
Schrodinger operator; point interactions; self-adjoint extensions; number of negative squares; EIGENVALUES; NUMBER;
D O I
10.1007/s00020-010-1759-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate negative spectra of one-dimensional (1D) Schrodinger operators with delta- and delta'-interactions on a discrete set in the framework of a new approach. Namely, using the technique of boundary triplets and the corresponding Weyl functions, we complete and generalize the results of Albeverio and Nizhnik (Lett Math Phys 65: 27-35, 2003; Methods Funct Anal Topol 9(4): 273-286, 2003). For instance, we propose an algorithm for determining the number of negative squares of the operator with delta-interactions. We also show that the number of negative squares of the operator with delta'-interactions equals the number of negative strengths.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 19 条
[1]   On the number of negative eigenvalues of a one-dimensional Schrodinger operator with point interactions [J].
Albeverio, S ;
Nizhnik, L .
LETTERS IN MATHEMATICAL PHYSICS, 2003, 65 (01) :27-35
[2]  
Albeverio S., 2005, Solvable Models in Quantum Mechanics, V2
[3]  
Albeverio S., 2000, Singular Perturbations of Differential Operators
[4]  
[Anonymous], UKRAIN MAT ZH
[5]  
[Anonymous], 1965, EXPANSIONS EIGENFUNC
[6]  
[Anonymous], 2000, Methods Funct. Anal. Topol
[7]  
[Anonymous], METHODS FUNCT ANAL T
[8]  
BUSCHMANN D, 1995, J REINE ANGEW MATH, P169
[9]   GENERALIZED RESOLVENTS AND THE BOUNDARY-VALUE-PROBLEMS FOR HERMITIAN OPERATORS WITH GAPS [J].
DERKACH, VA ;
MALAMUD, MM .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 95 (01) :1-95
[10]  
GESZTESY F, 1985, J REINE ANGEW MATH, V362, P27