BILINEAR IDENTITIES FOR AN EXTENDED B-TYPE KADOMTSEV-PETVIASHVILI HIERARCHY

被引:4
作者
Lin, Runliang [1 ]
Cao, Tiancheng [1 ]
Liu, Xiaojun [2 ]
Zeng, Yunbo [1 ]
机构
[1] Tsinghua Univ, Sch Sci, Dept Math Sci, Beijing 100084, Peoples R China
[2] China Agr Univ, Dept Appl Math, Beijing 100094, Peoples R China
基金
中国国家自然科学基金;
关键词
BKP hierarchy; self-consistent source; bilinear identity; tau function; Hirota bilinear form; SELF-CONSISTENT SOURCES; KP HIERARCHY; TODA HIERARCHY; EQUATIONS; TRANSFORMATION;
D O I
10.1134/S0040577916030016
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct bilinear identities for wave functions of an extended B-type Kadomtsev-Petviashvili (BKP) hierarchy containing two types of (2+1)-dimensional Sawada-Kotera equations with a self-consistent source. Introducing an auxiliary variable corresponding to the extended flow for the BKP hierarchy, we find the tau-function and bilinear identities for this extended BKP hierarchy. The bilinear identities generate all the Hirota bilinear equations for the zero-curvature forms of this extended BKP hierarchy. As examples, we obtain the Hirota bilinear equations for the two types of (2+1)-dimensional Sawada-Kotera equations in explicit form.
引用
收藏
页码:307 / 319
页数:13
相关论文
共 41 条
  • [1] Method of squared eigenfunction potentials in integrable hierarchies of KP type
    Aratyn, H
    Nissimov, E
    Pacheva, S
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 193 (03) : 493 - 525
  • [2] ARATYN H, 2001, CRM P LECT NOTES, V29, P109
  • [3] Carlet G., 2003, ARXIVNLIN0306060V2
  • [4] THE EXTENDED TODA HIERARCHY
    Carlet, Guido
    Dubrovin, Boris
    Zhang, Youjin
    [J]. MOSCOW MATHEMATICAL JOURNAL, 2004, 4 (02) : 313 - 332
  • [5] The "ghost" symmetry of the BKP hierarchy
    Cheng, Jipeng
    He, Jingsong
    Hu, Sen
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (05)
  • [6] BILINEAR EQUATIONS FOR THE CONSTRAINED KP HIERARCHY
    CHENG, Y
    ZHANG, YJ
    [J]. INVERSE PROBLEMS, 1994, 10 (02) : L11 - L17
  • [7] Darboux Transformations for (2+1)-Dimensional Extensions of the KP Hierarchy
    Chvartatskyi, Oleksandr
    Sydorenko, Yuriy
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2015, 11
  • [8] TRANSFORMATION GROUPS FOR SOLITON-EQUATIONS .4. A NEW HIERARCHY OF SOLITON-EQUATIONS OF KP-TYPE
    DATE, E
    JIMBO, M
    KASHIWARA, M
    MIWA, T
    [J]. PHYSICA D, 1982, 4 (03): : 343 - 365
  • [9] Date E., 1983, Non-Linear Integrable Systems - Classical Theory and Quantum Theory. Proceedings of RIMS Symposium, P39
  • [10] Dickey L.A, 2003, SOLITON EQUATIONS HA, V26, DOI DOI 10.1142/ASMP