Regularized nonparametric Volterra kernel estimation

被引:56
作者
Birpoutsoukis, Georgios [1 ]
Marconato, Anna [1 ]
Lataire, John [1 ]
Schoukens, Johan [1 ]
机构
[1] Vrije Univ Brussel, Dept ELEC, Pl Laan 2, B-1050 Brussels, Belgium
关键词
System identification; Nonlinear systems; Nonparametric estimation; Volterra series; Regularization; Gaussian processes; LINEAR-SYSTEM IDENTIFICATION; REGRESSION;
D O I
10.1016/j.automatica.2017.04.014
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, the regularization approach introduced recently for nonparametric estimation of linear systems is extended to the estimation of nonlinear systems modeled as Volterra series. The kernels of order higher than one, representing higher dimensional impulse responses in the series, are considered to be realizations of multidimensional Gaussian processes. Based on this, prior information about the structure of the Volterra kernel is introduced via an appropriate penalization term in the least squares cost function. It is shown that the proposed method is able to deliver accurate estimates of the Volterra kernels even in the case of a small amount of data points. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:324 / 327
页数:4
相关论文
共 14 条
[1]  
Chen T., 2016, ARXIV161203542
[2]   On the estimation of transfer functions, regularizations and Gaussian processes-Revisited [J].
Chen, Tianshi ;
Ohlsson, Henrik ;
Ljung, Lennart .
AUTOMATICA, 2012, 48 (08) :1525-1535
[3]   Norm-dependent covariance permissibility of weakly homogeneous spatial random fields and its consequences in spatial statistics [J].
Christakos, G ;
Papanicolaou, V .
STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2000, 14 (06) :471-478
[4]   KERNELS FOR LINEAR TIME INVARIANT SYSTEM IDENTIFICATION [J].
Dinuzzo, Francesco .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2015, 53 (05) :3299-3317
[5]   A unifying view of Wiener and Volterra theory and polynomial kernel regression [J].
Franz, Matthias O. ;
Schoelkopf, Bernhard .
NEURAL COMPUTATION, 2006, 18 (12) :3097-3118
[6]   Transfer function and transient estimation by Gaussian process regression in the frequency domain [J].
Lataire, John ;
Chen, Tianshi .
AUTOMATICA, 2016, 72 :217-229
[7]  
Ljung L., 1999, SYSTEM IDENTIFICATIO
[8]   Tuning complexity in regularized kernel-based regression and linear system identification: The robustness of the marginal likelihood estimator [J].
Pillonetto, Gianluigi ;
Chiuso, Alessandro .
AUTOMATICA, 2015, 58 :106-117
[9]   Kernel methods in system identification, machine learning and function estimation: A survey [J].
Pillonetto, Gianluigi ;
Dinuzzo, Francesco ;
Chen, Tianshi ;
De Nicolao, Giuseppe ;
Ljung, Lennart .
AUTOMATICA, 2014, 50 (03) :657-682
[10]   Prediction error identification of linear systems: A nonparametric Gaussian regression approach [J].
Pillonetto, Gianluigi ;
Chiuso, Alessandro ;
De Nicolao, Giuseppe .
AUTOMATICA, 2011, 47 (02) :291-305