Multidomain Features Fusion for Zero-Shot Learning

被引:4
作者
Liu, Zhihao [1 ,2 ]
Zeng, Zhigang [1 ,2 ]
Lian, Cheng [3 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Automat, Wuhan 430074, Peoples R China
[2] Educ Minist China, Key Lab Image Proc & Intelligent Control, Wuhan 430074, Hubei, Peoples R China
[3] Wuhan Univ Technol, Sch Automat, Wuhan 430074, Peoples R China
来源
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE | 2020年 / 4卷 / 06期
关键词
Image classification; image retrieval; semantics; transfer learning; zero-shot learning;
D O I
10.1109/TETCI.2018.2868061
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Given a novel class instance, the purpose of zero-shot learning (ZSL) is to learn a model to classify the instance by seen samples and semantic information transcending class boundaries. The difficulty lies in how to find a suitable space for zero-shot recognition. The previous approaches use semantic space or visual space as classification space. These methods, which typically learn visual-semantic or semantic-visual mapping and directly exploit the output of the mapping function to measure similarity to classify new categories, do not adequately consider the complementarity and distribution gap of multiple domain information. In this paper, we propose to learn a multidomain information fusion space by a joint learning framework. Specifically, we consider the fusion space as a shared space in which different domain features can be recovered by simple linear transformation. By learning a n-way classifier of fusion space from the seen class samples, we also obtain the discriminative information of the similarity space to make the fusion representation more separable. Extensive experiments on popular benchmark datasets manifest that our approach achieves state-of-the-art performances in both supervised and unsupervised ZSL tasks.
引用
收藏
页码:764 / 773
页数:10
相关论文
共 50 条
  • [41] Detecting Errors with Zero-Shot Learning
    Wu, Xiaoyu
    Wang, Ning
    ENTROPY, 2022, 24 (07)
  • [42] Prototype rectification for zero-shot learning
    Yi, Yuanyuan
    Zeng, Guolei
    Ren, Bocheng
    Yang, Laurence T.
    Chai, Bin
    Li, Yuxin
    PATTERN RECOGNITION, 2024, 156
  • [43] A review on multimodal zero-shot learning
    Cao, Weipeng
    Wu, Yuhao
    Sun, Yixuan
    Zhang, Haigang
    Ren, Jin
    Gu, Dujuan
    Wang, Xingkai
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2023, 13 (02)
  • [44] Attribute subspaces for zero-shot learning
    Zhou, Lei
    Liu, Yang
    Bai, Xiao
    Li, Na
    Yu, Xiaohan
    Zhou, Jun
    Hancock, Edwin R.
    PATTERN RECOGNITION, 2023, 144
  • [45] Robust Zero-Shot Learning with Source Attributes Noise
    Yu, Jun
    Wu, Songsong
    Wang, Lu
    Jing, Xiao-Yuan
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATICS AND COMPUTING (PIC), VOL 1, 2016, : 205 - 209
  • [46] Enhancing Classification in Zero-Shot Learning with the Aid of Perceptron
    Zengin, Hilal
    Ismailoglu, Firat
    2022 30TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2022,
  • [47] Unknown Attack Detection Based on Zero-Shot Learning
    Zhang, Zhun
    Liu, Qihe
    Qiu, Shilin
    Zhou, Shijie
    Zhang, Cheng
    IEEE ACCESS, 2020, 8 : 193981 - 193991
  • [48] Zero-shot learning for compound fault diagnosis of bearings
    Xu, Juan
    Zhou, Long
    Zhao, Weihua
    Fan, Yuqi
    Ding, Xu
    Yuan, Xiaohui
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 190
  • [49] Benchmarking knowledge-driven zero-shot learning
    Geng, Yuxia
    Chen, Jiaoyan
    Zhuang, Xiang
    Chen, Zhuo
    Pan, Jeff Z.
    Li, Juan
    Yuan, Zonggang
    Chen, Huajun
    JOURNAL OF WEB SEMANTICS, 2023, 75
  • [50] Denoised and Dynamic Alignment Enhancement for Zero-Shot Learning
    Ge, Jiannan
    Liu, Zhihang
    Li, Pandeng
    Xie, Lingxi
    Zhang, Yongdong
    Tian, Qi
    Xie, Hongtao
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2025, 34 : 1501 - 1515