Multidomain Features Fusion for Zero-Shot Learning

被引:4
|
作者
Liu, Zhihao [1 ,2 ]
Zeng, Zhigang [1 ,2 ]
Lian, Cheng [3 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Automat, Wuhan 430074, Peoples R China
[2] Educ Minist China, Key Lab Image Proc & Intelligent Control, Wuhan 430074, Hubei, Peoples R China
[3] Wuhan Univ Technol, Sch Automat, Wuhan 430074, Peoples R China
来源
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE | 2020年 / 4卷 / 06期
关键词
Image classification; image retrieval; semantics; transfer learning; zero-shot learning;
D O I
10.1109/TETCI.2018.2868061
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Given a novel class instance, the purpose of zero-shot learning (ZSL) is to learn a model to classify the instance by seen samples and semantic information transcending class boundaries. The difficulty lies in how to find a suitable space for zero-shot recognition. The previous approaches use semantic space or visual space as classification space. These methods, which typically learn visual-semantic or semantic-visual mapping and directly exploit the output of the mapping function to measure similarity to classify new categories, do not adequately consider the complementarity and distribution gap of multiple domain information. In this paper, we propose to learn a multidomain information fusion space by a joint learning framework. Specifically, we consider the fusion space as a shared space in which different domain features can be recovered by simple linear transformation. By learning a n-way classifier of fusion space from the seen class samples, we also obtain the discriminative information of the similarity space to make the fusion representation more separable. Extensive experiments on popular benchmark datasets manifest that our approach achieves state-of-the-art performances in both supervised and unsupervised ZSL tasks.
引用
收藏
页码:764 / 773
页数:10
相关论文
共 50 条
  • [21] Zero-shot classification with unseen prototype learning
    Ji, Zhong
    Cui, Biying
    Yu, Yunlong
    Pang, Yanwei
    Zhang, Zhongfei
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (17) : 12307 - 12317
  • [22] Classifier and Exemplar Synthesis for Zero-Shot Learning
    Soravit Changpinyo
    Wei-Lun Chao
    Boqing Gong
    Fei Sha
    International Journal of Computer Vision, 2020, 128 : 166 - 201
  • [23] Hierarchical Prototype Learning for Zero-Shot Recognition
    Zhang, Xingxing
    Gui, Shupeng
    Zhu, Zhenfeng
    Zhao, Yao
    Liu, Ji
    IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 22 (07) : 1692 - 1703
  • [24] Zero-shot classification with unseen prototype learning
    Zhong Ji
    Biying Cui
    Yunlong Yu
    Yanwei Pang
    Zhongfei Zhang
    Neural Computing and Applications, 2023, 35 : 12307 - 12317
  • [25] Generative Mixup Networks for Zero-Shot Learning
    Xu, Bingrong
    Zeng, Zhigang
    Lian, Cheng
    Ding, Zhengming
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022,
  • [26] Classifier and Exemplar Synthesis for Zero-Shot Learning
    Changpinyo, Soravit
    Chao, Wei-Lun
    Gong, Boqing
    Sha, Fei
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2020, 128 (01) : 166 - 201
  • [27] MFF: Multi-modal feature fusion for zero-shot learning
    Cao, Weipeng
    Wu, Yuhao
    Huang, Chengchao
    Patwary, Muhammed J. A.
    Wang, Xizhao
    NEUROCOMPUTING, 2022, 510 : 172 - 180
  • [28] Zero-shot Learning via the fusion of generation and embedding for image recognition
    Zhao, Peng
    Zhang, Siying
    Liu, Jinhui
    Liu, Huiting
    INFORMATION SCIENCES, 2021, 578 (578) : 831 - 847
  • [29] Class Representative Learning for Zero-shot Learning Using Purely Visual Data
    Chandrashekar M.
    Lee Y.
    SN Computer Science, 2021, 2 (4)
  • [30] Learning semantic ambiguities for zero-shot learning
    Hanouti, Celina
    Le Borgne, Herve
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (26) : 40745 - 40759