Linear quantum trajectories: Applications to continuous projection measurements

被引:50
作者
Jacobs, K [1 ]
Knight, PL [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Opt Sect, London SW7 2BZ, England
来源
PHYSICAL REVIEW A | 1998年 / 57卷 / 04期
关键词
D O I
10.1103/PhysRevA.57.2301
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a method for obtaining evolution operators for linear quantum trajectories. We apply this to a number of physical examples of varying mathematical complexity, in which the quantum trajectories describe the continuous projection measurement of physical observables. Using this method we calculate the average conditional uncertainty for the measured observables, being a central quantity of interest in these measurement processes.
引用
收藏
页码:2301 / 2310
页数:10
相关论文
共 53 条
[1]  
ARGARWAL GS, 1974, SPRINGER TRACTS MODE, V70
[2]   Note on the integration of linear differential equations [J].
Baker, HF .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1905, 2 :293-296
[3]   CONTINUAL MEASUREMENTS FOR QUANTUM OPEN SYSTEMS [J].
BARCHIELLI, A .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1983, 74 (02) :113-138
[4]   MEASUREMENTS CONTINUOUS IN TIME AND A-POSTERIORI STATES IN QUANTUM-MECHANICS [J].
BARCHIELLI, A ;
BELAVKIN, VP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (07) :1495-1514
[5]   A MODEL FOR THE MACROSCOPIC DESCRIPTION AND CONTINUAL OBSERVATIONS IN QUANTUM-MECHANICS [J].
BARCHIELLI, A ;
LANZ, L ;
PROSPERI, GM .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1982, 72 (01) :79-121
[6]  
BARTLETT MS, 1963, J ROY STAT SOC B, V25, P264
[7]  
Belavkin P., 1989, Modeling and Control of Systems, V121, P245
[8]   A QUANTUM PARTICLE UNDERGOING CONTINUOUS OBSERVATION [J].
BELAVKIN, VP ;
STASZEWSKI, P .
PHYSICS LETTERS A, 1989, 140 (7-8) :359-362
[9]   NONDEMOLITION OBSERVATION OF A FREE QUANTUM PARTICLE [J].
BELAVKIN, VP ;
STASZEWSKI, P .
PHYSICAL REVIEW A, 1992, 45 (03) :1347-1356
[10]  
Campbell J. E., 1896, P LOND MATH SOC, Vs1-28, P381, DOI 10.1112/plms/s1-28.1.381