Volume preserving flow by powers of symmetric polynomials in the principal curvatures

被引:3
|
作者
Bertini, Maria Chiara [1 ]
Sinestrari, Carlo [2 ]
机构
[1] Univ Roma Roma Tre, Dipartimento Matemat & Fis, Largo San Leonardo Murialdo 1, I-00146 Rome, Italy
[2] Univ Roma Tor Vergata, Dipartimento Ingn Civile & Ingn Informat, Via Politecn 1, I-00133 Rome, Italy
关键词
CONVEX HYPERSURFACES; MEAN-CURVATURE; SURFACES;
D O I
10.1007/s00209-017-1995-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a volume preserving curvature flow of convex hypersurfaces, driven by a power of the k-th elementary symmetric polynomial in the principal curvatures. Unlike most of the previous works on related problems, we do not require assumptions on the curvature pinching of the initial datum. We prove that the solution exists for all times and that the speed remains bounded and converges to a constant in an integral norm. In the case of the volume preserving scalar curvature flow, we can prove that the hypersurfaces converge smoothly to a round sphere.
引用
收藏
页码:1219 / 1236
页数:18
相关论文
共 25 条