The spectrum of the mean curvature operator

被引:1
作者
Mihailescu, Mihai [1 ,2 ]
机构
[1] Univ Craiova, Dept Math, Craiova 200585, Romania
[2] Univ Bucharest, Res Inst, Bucharest 050663, Romania
关键词
Eigenvalue problems; Γ -convergence; Mean curvature operator; p-Laplacian; Variational inequalities; BORN-INFELD EQUATION; DIRICHLET PROBLEM; SPACE;
D O I
10.1017/prm.2020.25
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the spectrum of the relativistic mean curvature operator on a bounded domain omega subset of Double-struck capital R-N (N > 1) having smooth boundary, subject to the homogeneous Dirichlet boundary condition, is exactly the interval (lambda(1)(2), infinity), where lambda(1)(2) stands for the principal frequency of the Laplace operator in omega.
引用
收藏
页码:451 / 463
页数:13
相关论文
共 19 条
  • [1] [Anonymous], 1989, DIRECT METHODS CALCU
  • [2] Critical Point Theory for the Lorentz Force Equation
    Arcoya, David
    Bereanu, Cristian
    Torres, Pedro J.
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2019, 232 (03) : 1685 - 1724
  • [3] SPACELIKE HYPERSURFACES WITH PRESCRIBED BOUNDARY-VALUES AND MEAN-CURVATURE
    BARTNIK, R
    SIMON, L
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 87 (01) : 131 - 152
  • [4] Bereanu C, 2014, ADV NONLINEAR STUD, V14, P315
  • [5] Eigenvalue problems in Orlicz-Sobolev spaces for rapidly growing operators in divergence form
    Bocea, Marian
    Mihailescu, Mihai
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (02) : 640 - 657
  • [6] On the Born-Infeld equation for electrostatic fields with a superposition of point charges
    Bonheure, Denis
    Colasuonno, Francesca
    Foldes, Juraj
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (03) : 749 - 772
  • [7] On the Electrostatic Born-Infeld Equation with Extended Charges
    Bonheure, Denis
    d'Avenia, Pietro
    Pomponio, Alessio
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 346 (03) : 877 - 906
  • [8] Brezis H, 2010, DIFFER INTEGRAL EQU, V23, P801
  • [9] MAXIMAL SPACE-LIKE HYPERSURFACES IN LORENTZ-MINKOWSKI SPACES
    CHENG, SY
    YAU, ST
    [J]. ANNALS OF MATHEMATICS, 1976, 104 (03) : 407 - 419
  • [10] Coelho I, 2014, TOPOL METHOD NONL AN, V44, P23