Estimating the tail shape parameter from option prices

被引:3
作者
Hamidieh, Kam [1 ]
机构
[1] Univ Texas Austin, Stat & Data Sci Dept, 2317 Speedway D9800, Austin, TX 78712 USA
来源
JOURNAL OF RISK | 2017年 / 19卷 / 06期
关键词
options; option pricing; risk neutral density; generalized Pareto; Standard&Poor's 500 (S&P 500); RISK-NEUTRAL DENSITIES; IMPLICIT; FUTURES;
D O I
10.21314/JOR.2017.366
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
In this paper, a method to estimate the tail shape parameter of the risk-neutral density from option prices is developed and closed-form pricing formulas for out-of-the-money European style options are derived. The pricing formulas satisfy many well-known model-free no-arbitrage properties for the options. Our focus is only on the tails of the risk-neutral density and not on the entire body of the density. Our method is quite general, and applies to a large class of risk-neutral densities. Unlike all other methods of estimating the risk-neutral density, it can be used without interpolating the implied volatility, or even without the knowledge of the current index value, the dividend yield or the risk-free rate. A case study using Standard & Poor's 500 (S&P 500) index options is given. In particular, the estimation of the tail shape of the S&P 500 index shows a thickening of the left tail just prior to the market turmoil of September 2008, but a thinning of the left tail in the midst of the turmoil.
引用
收藏
页码:85 / 110
页数:26
相关论文
共 50 条
  • [21] Risk-neutral density extraction from option prices: Improved pricing with mixture density networks
    Schittenkopf, C
    Dorffner, G
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2001, 12 (04): : 716 - 725
  • [22] Option prices under stochastic volatility
    Han, Jiguang
    Gao, Ming
    Zhang, Qiang
    Li, Yutian
    [J]. APPLIED MATHEMATICS LETTERS, 2013, 26 (01) : 1 - 4
  • [23] Equilibrium pricing bounds on option prices
    Chazal, Marie
    Jouini, Elyes
    [J]. MATHEMATICS AND FINANCIAL ECONOMICS, 2008, 1 (3-4) : 251 - 281
  • [24] Equilibrium pricing bounds on option prices
    Marie Chazal
    Elyès Jouini
    [J]. Mathematics and Financial Economics, 2008, 1 : 251 - 281
  • [25] APPROXIMATING OPTION PRICES UNDER LARGE CHANGES OF UNDERLYING ASSET PRICES
    Jun, Jae-Yun
    Rakotondratsimba, Yves
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2023, 26 (01)
  • [26] The Pricing of Tail Risk and the Equity Premium: Evidence From International Option Markets
    Andersen, Torben G.
    Fusari, Nicola
    Todorov, Viktor
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2020, 38 (03) : 662 - 678
  • [27] Model specification of conditional jump intensity: Evidence from S&P 500 returns and option prices
    Cheng, Hung-Wen
    Lo, Chien-Ling
    Tsai, Jeffrey Tzuhao
    [J]. NORTH AMERICAN JOURNAL OF ECONOMICS AND FINANCE, 2020, 54
  • [28] Principled pasting: attaching tails to risk-neutral probability density functions recovered from option prices
    Bollinger, Thomas R.
    Melick, William R.
    Thomas, Charles P.
    [J]. QUANTITATIVE FINANCE, 2023, 23 (12) : 1751 - 1768
  • [29] Principled pasting: attaching tails to risk-neutral probability density functions recovered from option prices
    Bollinger, Thomas R.
    Melick, William R.
    Thomas, Charles P.
    [J]. QUANTITATIVE FINANCE, 2021,
  • [30] MCMC ESTIMATION OF LEVY JUMP MODELS USING STOCK AND OPTION PRICES
    Yu, Cindy L.
    Li, Haitao
    Wells, Martin T.
    [J]. MATHEMATICAL FINANCE, 2011, 21 (03) : 383 - 422