On the general solution and hyperstability of the general radical quintic functional equation in quasi-β-Banach spaces

被引:14
|
作者
EL-Fassi, Iz-iddine [1 ]
机构
[1] Ibn Tofail Univ, Fac Sci, Dept Math, BP 133, Kenitra, Morocco
关键词
Hyperstability; General radical quintic functional equation; Quasi-beta-normed space; Fixed point; HYERS-ULAM STABILITY; NORMED SPACES; MAPPINGS;
D O I
10.1016/j.jmaa.2018.06.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The goal of this paper is to study the general solution of the following general radical quintic functional equation f ((5)root ax(5) + by(5)) = rf (x) + sf (y) for f a mapping from the field of real numbers into a vector space, where a, b, r, s are fixed nonzero reals. Also, we prove the generalized hyperstability results for the general radical quintic functional equation by using the fixed point theorem (cf. Dung and Hang (2018) [15], Theorem 2.1) in quasi-beta-Banach spaces. Namely, we show, under some weak natural assumptions, functions satisfying the above equation approximately (in some sense) must be actually solutions to it. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:733 / 748
页数:16
相关论文
共 50 条
  • [1] On positive answer to El-Fassi's question related to hyperstability of the general radical quintic functional equation in quasi-β-Banach spaces
    Nguyen Van Dung
    Sintunavarat, Wutiphol
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (04)
  • [2] Hyperstability of the General Linear Functional Equation in Non-Archimedean Banach Spaces
    Shuja, Shujauddin
    Embong, Ahmad F.
    Ali, Nor M. M.
    P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2024, 16 (01) : 70 - 81
  • [3] THE GENERALIZED HYPERSTABILITY OF GENERAL LINEAR EQUATION IN QUASI-2-BANACH SPACE
    Sharma, Ravinder Kumar
    Chandok, Sumit
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (04) : 1357 - 1372
  • [4] Hyperstability of the General Linear Functional Equation in Non-Archimedean Banach Spaces
    Shujauddin Shuja
    Ahmad F. Embong
    Nor M. M. Ali
    p-Adic Numbers, Ultrametric Analysis and Applications, 2024, 16 : 70 - 81
  • [5] The generalized hyperstability of general linear equations in quasi-Banach spaces
    Nguyen Van Dung
    Vo Thi Le Hang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 462 (01) : 131 - 147
  • [6] Stability and non-stability of generalized radical cubic functional equation in quasi-β-Banach spaces
    EL-Fassi, Iz-iddine
    Rassias, John Michael
    TBILISI MATHEMATICAL JOURNAL, 2019, 12 (03) : 175 - 190
  • [7] Hyperstability of Functional Equation Deriving from Quintic Mapping in Banach Spaces by Fixed Point Method
    Karthikeyan, Subramani
    Donganont, Siriluk
    Park, Choonkil
    Tamilvanan, Kandhasamy
    Wang, Yongqiao
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2025, 18 (01):
  • [8] HYPERSTABILITY RESULTS FOR THE GENERAL LINEAR FUNCTIONAL EQUATION IN NON-ARCHIMEDEAN 2-BANACH SPACES
    Shuja, Shujauddin
    Embong, Ahmad Fadillah
    Ali, Nor Muhainiah Mohd
    JOURNAL OF QUALITY MEASUREMENT AND ANALYSIS, 2024, 20 (02): : 35 - 48
  • [9] The Generalized Hyperstability of General Linear Equation in Quasi-2-Banach Space
    Ravinder Kumar Sharma
    Sumit Chandok
    Acta Mathematica Scientia, 2022, 42 : 1357 - 1372
  • [10] Hyperstability of general linear functional equation
    Bahyrycz, Anna
    Olko, Jolanta
    AEQUATIONES MATHEMATICAE, 2016, 90 (03) : 527 - 540