Implications of population-level immunity for the emergence of artemisinin-resistant malaria: a mathematical model

被引:24
|
作者
Scott, Nick [1 ,2 ]
Ataide, Ricardo [1 ]
Wilson, David P. [1 ,2 ]
Hellard, Margaret [1 ,2 ,3 ]
Price, Ric N. [4 ,5 ]
Simpson, Julie A. [6 ]
Fowkes, Freya J., I [1 ,2 ,6 ,7 ]
机构
[1] Burnet Inst, Dis Eliminat Program, Melbourne, Vic 3004, Australia
[2] Monash Univ, Dept Epidemiol & Prevent Med, Melbourne, Vic 3004, Australia
[3] Alfred Hosp, Dept Infect Dis, Melbourne, Vic 3004, Australia
[4] Charles Darwin Univ, Menzies Sch Hlth Res, Global & Trop Hlth Div, Darwin, NT, Australia
[5] Univ Oxford, Nuffield Dept Clin Med, Ctr Trop Med & Global Hlth, Oxford, England
[6] Univ Melbourne, Melbourne Sch Populat & Global Hlth, Ctr Epidemiol & Biostat, Melbourne, Vic 3010, Australia
[7] Monash Univ, Dept Infect Dis, Melbourne, Vic 3004, Australia
基金
英国医学研究理事会; 澳大利亚研究理事会; 英国惠康基金;
关键词
Africa; Malaria; Artemisinin; Drug resistance; Immunity; Mathematical model; PLASMODIUM-FALCIPARUM; ANTIMALARIAL RESISTANCE; DRUG-RESISTANCE; SPREAD; EPIDEMIOLOGY; CAMBODIA; HOST;
D O I
10.1186/s12936-018-2418-y
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
Background: Artemisinin-resistant Plasmodium falciparum has emerged in the Greater Mekong Subregion, an area of relatively low transmission, but has yet to be reported in Africa. A population-based mathematical model was used to investigate the relationship between P. falciparum prevalence, exposure-acquired immunity and time-to-emergence of artemisinin resistance. The possible implication for the emergence of resistance across Africa was assessed. Methods: The model included human and mosquito populations, two strains of malaria ("wild-type", "mutant"), three levels of human exposure-acquired immunity (none, low, high) with two types of immunity for each level (sporozoite/liver stage immunity and blood-stage/gametocyte immunity) and drug pressure based on per-capita treatment numbers. Results: The model predicted that artemisinin-resistant strains may circulate up to 10 years longer in high compared to low P. falciparum prevalence areas before resistance is confirmed. Decreased time-to-resistance in low prevalence areas was explained by low genetic diversity and immunity, which resulted in increased probability of selection and spread of artemisinin-resistant strains. Artemisinin resistance was estimated to be established by 2020 in areas of Africa with low (< 10%) P. falciparum prevalence, but not for 5 or 10 years later in moderate (10-25%) or high (> 25%) prevalence areas, respectively. Conclusions: Areas of low transmission and low immunity give rise to a more rapid expansion of artemisinin-resistant parasites, corroborating historical observations of anti-malarial resistance emergence. Populations where control strategies are in place that reduce malaria transmission, and hence immunity, may be prone to a rapid emergence and spread of artemisinin-resistant strains and thus should be carefully monitored.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Implications of population-level immunity for the emergence of artemisinin-resistant malaria: a mathematical model
    Nick Scott
    Ricardo Ataide
    David P. Wilson
    Margaret Hellard
    Ric N. Price
    Julie A. Simpson
    Freya J. I. Fowkes
    Malaria Journal, 17
  • [2] Artemisinin-resistant malaria
    White, N. J.
    Chotivanich, K.
    CLINICAL MICROBIOLOGY REVIEWS, 2024, 37 (04)
  • [3] Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study
    Phyo, Aung Pyae
    Nkhoma, Standwell
    Stepniewska, Kasia
    Ashley, Elizabeth A.
    Nair, Shalini
    McGready, Rose
    Moo, Carit Ler
    Al-Saai, Salma
    Dondorp, Arjen M.
    Lwin, Khin Maung
    Singhasivanon, Pratap
    Day, Nicholas P. J.
    White, Nicholas J.
    Anderson, Tim J. C.
    Nosten, Francois
    LANCET, 2012, 379 (9830) : 1960 - 1966
  • [4] The Threat of Artemisinin-Resistant Malaria
    Dondorp, Arjen M.
    Fairhurst, Rick M.
    Slutsker, Laurence
    MacArthur, John R.
    Breman, Joel G.
    Guerin, Philippe J.
    Wellems, Thomas E.
    Ringwald, Pascal
    Newman, Robert D.
    Plowe, Christopher V.
    NEW ENGLAND JOURNAL OF MEDICINE, 2011, 365 (12) : 1073 - 1075
  • [5] Pharmacotherapy for artemisinin-resistant malaria
    Koehne, Erik
    Adegnika, Ayola Akim
    Held, Jana
    Kreidenweiss, Andrea
    EXPERT OPINION ON PHARMACOTHERAPY, 2021, 22 (18) : 2483 - 2493
  • [6] Evidence of Artemisinin-Resistant Malaria in Africa
    Balikagala, Betty
    Fukuda, Naoyuki
    Ikeda, Mie
    Katuro, Osbert T.
    Tachibana, Shin-Ichiro
    Yamauchi, Masato
    Opio, Walter
    Emoto, Sakurako
    Anywar, Denis A.
    Kimura, Eisaku
    Palacpac, Nirianne M. Q.
    Odongo-Aginya, Emmanuel, I
    Ogwang, Martin
    Horii, Toshihiro
    Mita, Toshihiro
    NEW ENGLAND JOURNAL OF MEDICINE, 2021, 385 (13) : 1163 - 1171
  • [7] Artemisinin-Resistant Malaria as a Global Catastrophic Biological Threat
    Ricotta, Emily
    Kwan, Jennifer
    GLOBAL CATASTROPHIC BIOLOGICAL RISKS, 2019, 424 : 33 - 57
  • [8] Understanding artemisinin-resistant malaria: what a difference a year makes
    Fairhurst, Rick M.
    CURRENT OPINION IN INFECTIOUS DISEASES, 2015, 28 (05) : 417 - 425
  • [9] Assessment of the risk posed to Singapore by the emergence of artemisinin-resistant malaria in the Greater Mekong Subregion
    Zhang, Emma Xuxiao
    Chavatte, Jean-Marc
    Yi, Cherie See Xin
    Tow, Charlene
    Ying, Wong Jia
    Khan, Kamran
    Oh, Olivia Seen Huey
    Chin, Sarah Ngeet Mei
    Xin, Khong Wei
    Said, Zubaidah
    James, Lyn
    Cutter, Jeffery
    Ho, Marc
    Tey, Jeannie Su Hui
    WESTERN PACIFIC SURVEILLANCE AND RESPONSE, 2019, 10 (02)
  • [10] The last man standing is the most resistant: eliminating artemisinin-resistant malaria in Cambodia
    Maude, Richard J.
    Pontavornpinyo, Wirichada
    Saralamba, Sompob
    Aguas, Ricardo
    Yeung, Shunmay
    Dondorp, Arjen M.
    Day, Nicholas P. J.
    White, Nicholas J.
    White, Lisa J.
    MALARIA JOURNAL, 2009, 8