What makes biochemical networks tick? A graphical tool for the identification of oscillophores

被引:12
作者
Goldstein, BN
Ermakov, G
Centelles, JJ
Westerhoff, HV
Cascante, M
机构
[1] Univ Barcelona, Dept Biochem & Mol Biol, Fac Chem, E-08028 Barcelona, Spain
[2] Russian Acad Sci, Inst Theoret & Expt Biophys, Pushchino 142292, Moscow Reg, Russia
[3] Biocentrum Amsterdam, Dept Mol Cell Physiol, Amsterdam, Netherlands
[4] Biocentrum Amsterdam, Dept Math Biochem, Amsterdam, Netherlands
[5] Univ Barcelona, CeRQT, E-08028 Barcelona, Spain
来源
EUROPEAN JOURNAL OF BIOCHEMISTRY | 2004年 / 271卷 / 19期
关键词
graph-theoretic approach; kinetic modelling; oscillations; system identification; systems biology;
D O I
10.1111/j.1432-1033.2004.04324.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In view of the increasing number of reported concentration oscillations in living cells, methods are needed that can identify the causes of these oscillations. These causes always derive from the influences that concentrations have on reaction rates. The influences reach over many molecular reaction steps and are defined by the detailed molecular topology of the network. So-called 'autoinfluence paths', which quantify the influence of one molecular species upon itself through a particular path through the network, can have positive or negative values. The former bring a tendency towards instability. In this molecular context a new graphical approach is presented that enables the classification of network topologies into oscillophoretic and nonoscillophoretic, i.e. into ones that can and ones that cannot induce concentration oscillations. The network topologies are formulated in terms of a set of uni-molecular and bi-molecular reactions, organized into branched cycles of directed reactions, and presented as graphs. Subgraphs of the network topologies are then classified as negative ones (which can) and positive ones (which cannot) give rise to oscillations. A subgraph is oscillophoretic (negative) when it contains more positive than negative autoinfluence paths. Whether the former generates oscillations depends on the values of the other subgraphs, which again depend on the kinetic parameters. An example shows how this can be established. By following the rules of our new approach, various oscillatory kinetic models can be constructed and analyzed, starting from the classified simplest topologies and then working towards desirable complications. Realistic biochemical examples are analyzed with the new method, illustrating two new main classes of oscillophore topologies.
引用
收藏
页码:3877 / 3887
页数:11
相关论文
共 42 条
[1]  
[Anonymous], 1977, FREE ENERGY TRANSDUC
[2]   Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes [J].
Aon, MA ;
Cortassa, S ;
Marbán, E ;
O'Rourke, B .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (45) :44735-44744
[3]   Calcium - a life and death signal [J].
Berridge, MJ ;
Bootman, MD ;
Lipp, P .
NATURE, 1998, 395 (6703) :645-648
[4]   CONTROL OF PHOSPHOFRUCTOKINASE [PFK] ACTIVITY IN CONDITIONS SIMULATING THOSE OF GLYCOLYSING YEAST EXTRACT [J].
BETZ, A ;
SELKOV, E .
FEBS LETTERS, 1969, 3 (01) :5-&
[5]  
BRADY NR, 2004, IN PRESS BIOPHYS J
[6]  
Clark BurtonR., 1980, Academic culture, P1, DOI 10.1002/9780470142622.ch1
[7]   Control analysis of stationary forced oscillations [J].
Demin, OV ;
Westerhoff, HV ;
Kholodenko, BN .
JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (48) :10695-10710
[8]   OPERATIONAL PROCEDURE TOWARD THE CLASSIFICATION OF CHEMICAL OSCILLATORS [J].
EISWIRTH, M ;
FREUND, A ;
ROSS, J .
JOURNAL OF PHYSICAL CHEMISTRY, 1991, 95 (03) :1294-1299
[9]  
EISWIRTH M, 1991, ADV CHEM PHYS, V80, P127
[10]  
GOLDBETER A, 1990, RYTHMS CHAOS SYSTEMS