We study the Dirichlet problem for the stationary Oseen equations around a rotating body in an exterior domain. Our main results are the existence and uniqueness of weak and very weak solutions satisfying appropriate L-q-estimates. The uniqueness of very weak solutions is shown by the method of cut-off functions with an anisotropic decay. Then our existence result for very weak solutions is deduced by a duality argument from the existence and estimates of strong solutions. From this and interior regularity of very weak solutions, we finally establish the complete D-1,D-r-result for weak solutions of the Oseen equations around a rotating body in an exterior domain, where 4/3<r <4. Here, D-1,D-r is the homogeneous Sobolev space.
机构:
Univ Pau & Pays Adour, CNRS, UMR 5142, Lab Math & Applicat, F-64013 Pau, FranceUniv Pau & Pays Adour, CNRS, UMR 5142, Lab Math & Applicat, F-64013 Pau, France
Amrouche, Cherif
Meslameni, Mohamed
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pau & Pays Adour, CNRS, UMR 5142, Lab Math & Applicat, F-64013 Pau, FranceUniv Pau & Pays Adour, CNRS, UMR 5142, Lab Math & Applicat, F-64013 Pau, France
Meslameni, Mohamed
Necasova, Sarka
论文数: 0引用数: 0
h-index: 0
机构:
Acad Sci Czech Republ, Math Inst, CR-11567 Prague 1, Czech RepublicUniv Pau & Pays Adour, CNRS, UMR 5142, Lab Math & Applicat, F-64013 Pau, France
机构:
Univ Pau & Pays Adour, CNRS, UMR 5142, Lab Math & Applicat, F-64013 Pau, FranceUniv Pau & Pays Adour, CNRS, UMR 5142, Lab Math & Applicat, F-64013 Pau, France
Amrouche, Cherif
Meslameni, Mohamed
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pau & Pays Adour, CNRS, UMR 5142, Lab Math & Applicat, F-64013 Pau, FranceUniv Pau & Pays Adour, CNRS, UMR 5142, Lab Math & Applicat, F-64013 Pau, France
Meslameni, Mohamed
Necasova, Sarka
论文数: 0引用数: 0
h-index: 0
机构:
Acad Sci Czech Republ, Math Inst, CR-11567 Prague 1, Czech RepublicUniv Pau & Pays Adour, CNRS, UMR 5142, Lab Math & Applicat, F-64013 Pau, France