Free energy, entropy, and lattice gas representations

被引:0
作者
Percus, JK [1 ]
机构
[1] NYU, Courant Inst, Dept Phys, New York, NY 10012 USA
来源
PHYSICA A | 2000年 / 283卷 / 3-4期
基金
美国国家科学基金会;
关键词
entropy; classical fluids; lattice gases; inverse representation; simplicial trees;
D O I
10.1016/S0378-4371(00)00118-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The entropy formulation for profile equations of pair-interacting classical fluids is recalled, and the special case of next-neighbor interacting fluids in one dimension carried out in auxiliary field form. Attention shifts to the general lattice gas with multi-state sites. The exact entropy is obtained for next-neighbor interacting Cayley trees, and generalized to simplicial trees with adjacent surface interactions. We then find the continuum limit of the tree models in their usual lattice gas version and put this in the general context of many-body interacting classical systems. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:369 / 387
页数:19
相关论文
共 21 条
[1]   VARIATIONAL PRINCIPLES FOR EXPECTATIONS [J].
ARANOFF, S ;
PERCUS, JK .
PHYSICAL REVIEW, 1968, 166 (05) :1255-&
[2]   THE SPHERICAL MODEL OF A FERROMAGNET [J].
BERLIN, TH ;
KAC, M .
PHYSICAL REVIEW, 1952, 86 (06) :821-835
[3]   MOLECULAR DISTRIBUTION AND EQUATION OF STATE OF GASES [J].
DEBOER, J .
REPORTS ON PROGRESS IN PHYSICS, 1948, 12 :305-374
[4]  
EVANS R, 1992, INHOMOGENEOUS FLUIDS
[5]   A THEORY OF COOPERATIVE PHENOMENA [J].
KIKUCHI, R .
PHYSICAL REVIEW, 1951, 81 (06) :988-1003
[6]   CONSISTENT INTEGRAL-EQUATIONS FOR 2-BODY-FORCE AND 3-BODY-FORCE MODELS - APPLICATION TO A MODEL OF SILICON [J].
LAIRD, BB ;
WANG, J ;
HAYMET, ADJ .
PHYSICAL REVIEW E, 1993, 47 (04) :2491-2502
[7]   ASYMPTOTIC BEHAVIOR OF RADIAL DISTRIBUTION FUNCTION [J].
LEBOWITZ, JL ;
PERCUS, JK .
JOURNAL OF MATHEMATICAL PHYSICS, 1963, 4 (02) :248-&
[8]  
LEBOWITZ JL, 1983, ANN NY ACAD SCI, V410, P351, DOI 10.1111/j.1749-6632.1983.tb23333.x
[9]   EXPRESSION IN TERMS OF MOLECULAR DISTRIBUTION FUNCTIONS FOR THE ENTROPY DENSITY IN AN INFINITE SYSTEM [J].
NETTLETON, RE ;
GREEN, MS .
JOURNAL OF CHEMICAL PHYSICS, 1958, 29 (06) :1365-1370
[10]   SOME SOLVABLE MODELS OF NONUNIFORM CLASSICAL FLUIDS [J].
PERCUS, JK .
JOURNAL OF STATISTICAL PHYSICS, 1986, 42 (5-6) :921-930