A new approach to counterexamples to L1 estimates:: Korn's inequality, geometric rigidity, and regularity for gradients of separately convex functions

被引:91
作者
Conti, S
Faraco, D
Maggi, F
机构
[1] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
[2] Univ Florence, Dipartimento Matemat U Dini, I-50134 Florence, Italy
关键词
D O I
10.1007/s00205-004-0350-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The derivation of counterexamples to L-1 estimates can be reduced to a geometric decomposition procedure along rank-one lines in matrix space. We illustrate this concept in two concrete applications. Firstly, we recover a celebrated, and rather complex, counterexample by Ornstein, proving the failure of Korn's inequality, and of the corresponding geometrically nonlinear rigidity result, in L-1. Secondly, we construct a function f : R-2 --> R which is separately convex but whose gradient is not in BVloc, in the sense that the mixed derivative (2) f/partial derivativex(1) partial derivativex(2) is not a bounded measure.
引用
收藏
页码:287 / 300
页数:14
相关论文
共 32 条
[1]  
Alberti G, 1999, MATH Z, V230, P259, DOI 10.1007/PL00004691
[2]  
[Anonymous], ATTI ACCAD NAZ L SFM
[3]  
ASTALA K, 702004 MPIMIS
[4]   BI-CONVEXITY AND BI-MARTINGALES [J].
AUMANN, RJ ;
HART, S .
ISRAEL JOURNAL OF MATHEMATICS, 1986, 54 (02) :159-180
[5]  
Bourgain J, 2003, J AM MATH SOC, V16, P393
[6]   Separated nets in Euclidean space and Jacobians of Bilipschitz maps [J].
Burago, D ;
Kleiner, B .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1998, 8 (02) :273-282
[7]  
BURKHOLDER DL, 1986, LECT NOTES MATH, V1206, P61
[8]  
CONTI S, IN PRESS ARCH RATION
[9]  
CONTI S, 692004 MPIMIS
[10]  
CONTI S, 502004 MPIMIS