A new approach to counterexamples to L1 estimates:: Korn's inequality, geometric rigidity, and regularity for gradients of separately convex functions

被引:89
作者
Conti, S
Faraco, D
Maggi, F
机构
[1] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
[2] Univ Florence, Dipartimento Matemat U Dini, I-50134 Florence, Italy
关键词
D O I
10.1007/s00205-004-0350-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The derivation of counterexamples to L-1 estimates can be reduced to a geometric decomposition procedure along rank-one lines in matrix space. We illustrate this concept in two concrete applications. Firstly, we recover a celebrated, and rather complex, counterexample by Ornstein, proving the failure of Korn's inequality, and of the corresponding geometrically nonlinear rigidity result, in L-1. Secondly, we construct a function f : R-2 --> R which is separately convex but whose gradient is not in BVloc, in the sense that the mixed derivative (2) f/partial derivativex(1) partial derivativex(2) is not a bounded measure.
引用
收藏
页码:287 / 300
页数:14
相关论文
共 32 条
  • [1] Alberti G, 1999, MATH Z, V230, P259, DOI 10.1007/PL00004691
  • [2] [Anonymous], ATTI ACCAD NAZ L SFM
  • [3] ASTALA K, 702004 MPIMIS
  • [4] BI-CONVEXITY AND BI-MARTINGALES
    AUMANN, RJ
    HART, S
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1986, 54 (02) : 159 - 180
  • [5] Bourgain J, 2003, J AM MATH SOC, V16, P393
  • [6] Separated nets in Euclidean space and Jacobians of Bilipschitz maps
    Burago, D
    Kleiner, B
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 1998, 8 (02) : 273 - 282
  • [7] BURKHOLDER DL, 1986, LECT NOTES MATH, V1206, P61
  • [8] CONTI S, IN PRESS ARCH RATION
  • [9] CONTI S, 692004 MPIMIS
  • [10] CONTI S, 502004 MPIMIS