Design of Vacuum Post-Drying Procedures for Electrodes of Lithium-Ion Batteries

被引:18
|
作者
Huttner, Fabienne [1 ,2 ]
Marth, Axel [1 ,2 ]
Eser, Jochen C. [3 ]
Heckmann, Thilo [3 ]
Mohacsi, Jonas [3 ]
Mayer, Julian K. [1 ,2 ]
Scharfer, Philip [3 ]
Schabel, Wilhelm [3 ]
Kwade, Arno [1 ,2 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Particle Technol, Volkmaroder Str 5, D-38104 Braunschweig, Germany
[2] Tech Univ Carolo Wilhelmina Braunschweig, Battery LabFactory Braunschweig, Langer Kamp 19, D-38103 Braunschweig, Germany
[3] Karlsruhe Inst Technol, Thin Film Technol, Str Forum 7, D-76131 Karlsruhe, Germany
关键词
diffusion; electrochemistry; lithium-ion batteries; residual moisture; vacuum post-drying; LI-ION; ELECTROCHEMICAL PROPERTIES; THERMAL-STABILITY; CATHODE MATERIALS; AGING MECHANISMS; GRAPHITE ANODE; ELECTROLYTES; PERFORMANCE; SEPARATORS; MOISTURE;
D O I
10.1002/batt.202100088
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In order to reduce the residual moisture in lithium-ion batteries, electrodes and separators need to be post-dried prior to cell assembly. On an industrial scale, this is often conducted batch-wise in vacuum ovens for larger electrode and separator coils. Especially for electrodes, the corresponding post-drying parameters have to be carefully chosen to sufficiently reduce the moisture without damaging the sensitive microstructure. This requires a fundamental understanding of structural limitations as well as heat transfer and water mass transport in coils. The aim of this study is to establish a general understanding of the vacuum post-drying process of coils. Moreover, the targeted design of efficient, well-adjusted and application-oriented vacuum post-drying procedures for electrode coils on the basis of modelling is employed, while keeping the post-drying intensity as low as possible, in order to maintain the sensitive microstructure and to save time and costs. In this way, a comparatively short and moderate 2-phase vacuum post-drying procedure is successfully designed and practically applied. The results show that the designed procedure is able to significantly reduce the residual moisture of anode and cathode coils, even with greater electrode lengths and coating widths, without deteriorating the sensitive microstructure of the electrodes.
引用
收藏
页码:1499 / 1515
页数:17
相关论文
共 50 条
  • [21] Film formation at positive electrodes in lithium-ion batteries
    Würsig, A
    Buqa, H
    Holzapfel, M
    Krumeich, F
    Novák, P
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2005, 8 (01) : A34 - A37
  • [22] Viability of Additively Manufactured Electrodes for Lithium-Ion Batteries
    Cross, Nicholas R.
    Li, Hanyu
    Roy, Thomas
    Ehlinger, Victoria M.
    Lin, Tiras Y.
    Brady, Nicholas W.
    Chandrasekaran, Swetha
    Worsley, Marcus A.
    Bucci, Giovanna
    ACS APPLIED ENGINEERING MATERIALS, 2024, 3 (01): : 214 - 224
  • [23] Mechanical contact in composite electrodes of lithium-ion batteries
    Lu, Bo
    Zhao, Yanfei
    Feng, Jiemin
    Song, Yicheng
    Zhang, Junqian
    JOURNAL OF POWER SOURCES, 2019, 440
  • [24] Interfacial Fracture of Nanowire Electrodes of Lithium-Ion Batteries
    G. R. Hardin
    Y. Zhang
    C. D. Fincher
    M. Pharr
    JOM, 2017, 69 : 1519 - 1523
  • [25] ZnO Nanocrystals as Anode Electrodes for Lithium-Ion Batteries
    Zhang, Wenhui
    Du, Lijuan
    Chen, Zongren
    Hong, Juan
    Yue, Lu
    JOURNAL OF NANOMATERIALS, 2016, 2016
  • [26] Assessment of the wettability of porous electrodes for lithium-ion batteries
    Wu, Mao-Sung
    Liao, Tzu-Ling
    Wang, Yung-Yun
    Wan, Chi-Chao
    Journal of Applied Electrochemistry, 2004, 34 (08): : 797 - 805
  • [27] Assessment of the Wettability of Porous Electrodes for Lithium-Ion Batteries
    Mao-Sung Wu
    Tzu-Ling Liao
    Yung-Yun Wang
    Chi-Chao Wan
    Journal of Applied Electrochemistry, 2004, 34 : 797 - 805
  • [28] Fabrication and Characterization of Composite Electrodes for Lithium-ion Batteries
    Prosini, P. P.
    Cento, C.
    Masci, A.
    Carewska, M.
    2014 IEEE 23RD INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2014, : 1654 - 1659
  • [29] Oxide materials as positive electrodes for lithium-ion batteries
    Makhonina, EV
    Pervov, VS
    Dubasova, VS
    USPEKHI KHIMII, 2004, 73 (10) : 1075 - 1087
  • [30] Effects of surface stress on lithium-ion diffusion kinetics in nanosphere electrodes of lithium-ion batteries
    Zhang, Xing-yu
    Chen, Hao-Sen
    Fang, Daining
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2020, 169 (169)