Utilization of Micro-Doppler Radar to Classify Gait Patterns of Young and Elderly Adults: An Approach Using a Long Short-Term Memory Network

被引:7
作者
Hayashi, Sora [1 ]
Saho, Kenshi [1 ,2 ]
Shioiri, Keitaro [2 ]
Fujimoto, Masahiro [3 ]
Masugi, Masao [1 ]
机构
[1] Ritsumeikan Univ, Grad Sch Sci & Engn, Shiga 5258577, Japan
[2] Toyama Prefectural Univ, Grad Sch Engn, Toyama 9390398, Japan
[3] Natl Inst Adv Ind Sci & Technol, Human Augmentat Res Ctr, Chiba 2770882, Japan
关键词
Doppler radar; gait classification; machine learning; LSTM; HUMAN ACTIVITY CLASSIFICATION; IDENTIFICATION; PARAMETERS; SIGNATURES; WALKING; FALLERS;
D O I
10.3390/s21113643
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
To develop a daily monitoring system for early detection of fall risk of elderly people during walking, this study presents a highly accurate micro-Doppler radar (MDR)-based gait classification method for the young and elderly adults. Our method utilizes a time-series of velocity corresponding to leg motion during walking extracted from the MDR spectrogram (time-velocity distribution) in an experimental study involving 300 participants. The extracted time-series was inputted to a long short-term memory recurrent neural network to classify the gaits of young and elderly participant groups. We achieved a classification accuracy of 94.9%, which is significantly higher than that of a previously presented velocity-parameter-based classification method.
引用
收藏
页数:11
相关论文
共 33 条
[11]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90
[12]   Interaction of age, cognitive function, and gait performance in 50-80-year-olds [J].
LaRoche, Dain P. ;
Greenleaf, Brittnee L. ;
Croce, Ronald V. ;
McGaughy, Jill A. .
AGE, 2014, 36 (04)
[13]   Reference Values of Gait Speed and Gait Spatiotemporal Parameters for a South East Asian Population: The Yishun Study [J].
Lau, Lay Khoon ;
Wee, Shiou Liang ;
Pang, Wei Jun Benedict ;
Chen, Kexun Kenneth ;
Jabbar, Khalid Abdul ;
Yap, Philip Lin Kiat ;
Mallya, Jagadish Ullal ;
Ng, Daniella Hui Min ;
Tan, Queenie Lin Ling ;
Seah, Wei Ting ;
Ng, Tze Pin .
CLINICAL INTERVENTIONS IN AGING, 2020, 15 :1753-1765
[14]   Sequential Human Gait Classification With Distributed Radar Sensor Fusion [J].
Li, Haobo ;
Mehul, Ajay ;
Le Kernec, Julien ;
Gurbuz, Sevgi Z. ;
Fioranelli, Francesco .
IEEE SENSORS JOURNAL, 2021, 21 (06) :7590-7603
[15]   Hierarchical Sensor Fusion for Micro-Gesture Recognition With Pressure Sensor Array and Radar [J].
Li, Haobo ;
Liang, Xiangpeng ;
Shrestha, Aman ;
Liu, Yuchi ;
Heidari, Hadi ;
Le Kernec, Julien ;
Fioranelli, Francesco .
IEEE JOURNAL OF ELECTROMAGNETICS RF AND MICROWAVES IN MEDICINE AND BIOLOGY, 2020, 4 (03) :225-232
[16]   Gait-based human age classification using a silhouette model [J].
Nabila, Mansouri ;
Mohammed, Aouled Issa ;
Yousra, Ben Jemaa .
IET BIOMETRICS, 2018, 7 (02) :116-124
[17]  
Okinaka H., 2019, IEICE T FUNDAM ELECT, VJ102-A, P167
[18]   Gait Classification of Healthy Young and Elderly Adults Using Micro-Doppler Radar Remote Sensing [J].
Okinaka, Hiroaki ;
Saho, Kenshi ;
Fujimoto, Masahiro ;
Go, Seiken ;
Masugi, Masao ;
Sugano, Kouki ;
Uemura, Kazuki ;
Matsumoto, Michito .
2018 JOINT 10TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND INTELLIGENT SYSTEMS (SCIS) AND 19TH INTERNATIONAL SYMPOSIUM ON ADVANCED INTELLIGENT SYSTEMS (ISIS), 2018, :1222-1226
[19]   A new approach for classification of human gait based on time-frequency feature representations [J].
Orovic, Irena ;
Stankovic, Srdjan ;
Amin, Moeness .
SIGNAL PROCESSING, 2011, 91 (06) :1448-1456
[20]  
Phinyomark A., 2012, COMPUTATIONAL INTELL, P195