Ranging and tuning based particle swarm optimization with bat algorithm for task scheduling in cloud computing

被引:19
作者
Valarmathi, R. [1 ,2 ]
Sheela, T. [3 ]
机构
[1] Sathyabama Inst Sci & Technol, Fac CSE, Chennai, Tamil Nadu, India
[2] Sri Sairam Engn Coll, Dept Comp Sci & Engn, Chennai, Tamil Nadu, India
[3] Sri Sairam Engn Coll, Dept Informat Technol, Chennai, Tamil Nadu, India
来源
CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS | 2019年 / 22卷 / Suppl 5期
关键词
Cloud computing; Task scheduling; Particle swarm optimization; Bat algorithm; PSO ALGORITHM;
D O I
10.1007/s10586-017-1534-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cloud computing is the new technology offering services to build new application through virtualization. Virtualization improves the usage of resource utilization in cloud environment. Recently research in Task Scheduling problem has received more attention because the customerswant to maximize the utilization of resources in a cheaper way. In this paper an enhanced particle swarm optimization (PSO) algorithm for improving the efficiency in the task scheduling has been proposed. A ranging function and tuning function based PSO (RTPSO) based on data locality is introduced in this paper for solving the inertia weight assignment problem in existing PSO algorithm for task scheduling. The large inertia weight and small inertia weight will assist a global search and local search respectively. In addition, we have combined the RTPSO with Bat algorithm (RTPSO-B) to improve the optimization. Cloudsim is used in this paper to simulate the task scheduling in cloud environment. The proposed RTPSO-B based task scheduling is compared with various existing task scheduling algorithms such as GA, ACO, ordinary PSO. Simulation results proved proposed RTPSO-B based task scheduling method reduces makespan, cost and increases the utilization of resources.
引用
收藏
页码:11975 / 11988
页数:14
相关论文
共 50 条
  • [1] Ranging and tuning based particle swarm optimization with bat algorithm for task scheduling in cloud computing
    R. Valarmathi
    T. Sheela
    Cluster Computing, 2019, 22 : 11975 - 11988
  • [2] A Novel Task-Scheduling Algorithm of Cloud Computing Based on Particle Swarm Optimization
    Wu, Zhou
    Xiong, Jun
    INTERNATIONAL JOURNAL OF GAMING AND COMPUTER-MEDIATED SIMULATIONS, 2021, 13 (02) : 1 - 15
  • [3] Survey of Task Scheduling in Cloud Computing based on Particle Swarm Optimization
    Alkayal, Entisar S.
    Jennings, Nicholas R.
    Abulkhair, Maysoon F.
    2017 INTERNATIONAL CONFERENCE ON ELECTRICAL AND COMPUTING TECHNOLOGIES AND APPLICATIONS (ICECTA), 2017, : 263 - 268
  • [4] An improved particle swarm optimization algorithm for task scheduling in cloud computing
    Pirozmand P.
    Jalalinejad H.
    Hosseinabadi A.A.R.
    Mirkamali S.
    Li Y.
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (04) : 4313 - 4327
  • [5] An Improved Particle Swarm Optimization Algorithm Based on Adaptive Weight for Task Scheduling in Cloud Computing
    Luo, Fei
    Yuan, Ye
    Ding, Weichao
    Lu, Haifeng
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND APPLICATION ENGINEERING (CSAE2018), 2018,
  • [6] Job scheduling algorithm for cloud computing based on particle swarm optimization
    Liu, Jing
    Luo, Xingguo
    Zhang, Xingming
    Zhang, Fan
    NANOTECHNOLOGY AND PRECISION ENGINEERING, PTS 1 AND 2, 2013, 662 : 957 - 960
  • [7] Efficient Task Scheduling in Cloud Computing using an Improved Particle Swarm Optimization Algorithm
    Peng, Guang
    Wolter, Katinka
    CLOSER: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND SERVICES SCIENCE, 2019, : 58 - 67
  • [8] A Particle Swarm Optimization Based Pareto Optimal Task Scheduling in Cloud Computing
    Beegom, A. S. Ajeena
    Rajasree, M. S.
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2014, PT II, 2014, 8795 : 79 - 86
  • [9] Research on cloud computing task scheduling algorithm based on particle swarm optimization
    Wang, Qing
    Fu, Xue-Liang
    Dong, Gai-Fang
    Li, Tao
    JOURNAL OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING, 2019, 19 (02) : 327 - 335
  • [10] Cloud computing task scheduling based on Improved Particle Swarm Optimization Algorithm
    Zhang, Yuping
    Yang, Rui
    IECON 2017 - 43RD ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2017, : 8768 - 8772