Maximal and Riesz Potential Operators on Musielak-Orlicz Spaces Over Metric Measure Spaces

被引:17
作者
Ohno, Takao [1 ]
Shimomura, Tetsu [2 ]
机构
[1] Oita Univ, Fac Educ, Oita 8701192, Japan
[2] Hiroshima Univ, Grad Sch Educ, Dept Math, Higashihiroshima 7398524, Japan
基金
日本学术振兴会;
关键词
Maximal functions; Riesz potentials; Musielak-Orlicz spaces; Sobolev's inequality; Metric measure space; Lower Ahlfors regular; SOBOLEV EMBEDDINGS; GENERALIZED LEBESGUE; VARIABLE EXPONENT; MORREY SPACES; INEQUALITIES; FUNCTIONALS; INTEGRABILITY; BOUNDEDNESS; REGULARITY;
D O I
10.1007/s00020-018-2484-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Our aim in this paper is to deal with the boundedness of the Hardy-Littlewood maximal operator M on Musielak-Orlicz spaces L phi(X) over bounded metric measure spaces. As an application of the boundedness of M, we establish a generalization of Sobolev's inequality for Riesz potentials I(),f with f is an element of L-Phi (X).
引用
收藏
页数:18
相关论文
共 50 条
[31]   Trudinger's inequality for Riesz potentials of functions in Musielak-Orlicz spaces [J].
Ohno, Takao ;
Shimomura, Tetsu .
BULLETIN DES SCIENCES MATHEMATIQUES, 2014, 138 (02) :225-235
[32]   Trudinger's inequality and continuity for Riesz potentials of functions in grand Musielak-Orlicz-Morrey spaces over nondoubling metric measure spaces [J].
Ohno, Takao ;
Shimomura, Tetsu .
KYOTO JOURNAL OF MATHEMATICS, 2016, 56 (03) :633-653
[33]   Sobolev embeddings for Riesz potentials of functions in Musielak-Orlicz-Morrey spaces over non-doubling measure spaces [J].
Sawano, Yoshihiro ;
Shimomura, Tetsu .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2014, 25 (12) :976-991
[34]   Weak Musielak-Orlicz Hardy spaces and applications [J].
Liang, Yiyu ;
Yang, Dachun ;
Jiang, Renjin .
MATHEMATISCHE NACHRICHTEN, 2016, 289 (5-6) :634-677
[35]   On Trudinger-type inequalities in Musielak-Orlicz-Morrey spaces of an integral form over metric measure spaces [J].
Ohno, Takao ;
Shimomura, Tetsu .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2024, 43 (3-4) :377-400
[36]   The Riesz potential in generalized Orlicz spaces [J].
Harjulehto, Petteri ;
Hasto, Peter .
FORUM MATHEMATICUM, 2017, 29 (01) :229-244
[37]   Hardy-Littlewood maximal operators and generalized Orlicz spaces on measure spaces [J].
Zhou, Haiyan ;
Song, Xiaoqian ;
Wang, Songbai ;
Zhou, Jiang .
ANNALS OF FUNCTIONAL ANALYSIS, 2025, 16 (01)
[38]   Maximal functions, Riesz potentials and Sobolev embeddings on Musielak-Orlicz-Morrey spaces of variable exponent in Rn [J].
Mizuta, Yoshihiro ;
Nakai, Eiichi ;
Ohno, Takao ;
Shimomura, Tetsu .
REVISTA MATEMATICA COMPLUTENSE, 2012, 25 (02) :413-434
[39]   Capacity for potentials of functions in Musielak-Orlicz spaces [J].
Maeda, Fumi-Yuki ;
Mizuta, Yoshihiro ;
Ohno, Takao ;
Shimomura, Tetsu .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) :6231-6243
[40]   Generalized solution of the double obstacle problem for Musielak-Orlicz Dirichlet energy integral on metric measure spaces [J].
Futamura, Toshihide ;
Shimomura, Tetsu .
HIROSHIMA MATHEMATICAL JOURNAL, 2023, 53 (03) :359-372