Maximal and Riesz Potential Operators on Musielak-Orlicz Spaces Over Metric Measure Spaces

被引:17
作者
Ohno, Takao [1 ]
Shimomura, Tetsu [2 ]
机构
[1] Oita Univ, Fac Educ, Oita 8701192, Japan
[2] Hiroshima Univ, Grad Sch Educ, Dept Math, Higashihiroshima 7398524, Japan
基金
日本学术振兴会;
关键词
Maximal functions; Riesz potentials; Musielak-Orlicz spaces; Sobolev's inequality; Metric measure space; Lower Ahlfors regular; SOBOLEV EMBEDDINGS; GENERALIZED LEBESGUE; VARIABLE EXPONENT; MORREY SPACES; INEQUALITIES; FUNCTIONALS; INTEGRABILITY; BOUNDEDNESS; REGULARITY;
D O I
10.1007/s00020-018-2484-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Our aim in this paper is to deal with the boundedness of the Hardy-Littlewood maximal operator M on Musielak-Orlicz spaces L phi(X) over bounded metric measure spaces. As an application of the boundedness of M, we establish a generalization of Sobolev's inequality for Riesz potentials I(),f with f is an element of L-Phi (X).
引用
收藏
页数:18
相关论文
共 50 条
[21]   Sobolev's Inequality for Riesz Potentials of Functions in Musielak-Orlicz-Morrey Spaces Over Non-doubling Metric Measure Spaces [J].
Ohno, Takao ;
Shimomura, Tetsu .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2020, 63 (02) :287-303
[22]   OBSTACLE PROBLEM FOR MUSIELAK-ORLICZ DIRICHLET ENERGY INTEGRAL ON METRIC MEASURE SPACES [J].
Maeda, Fumi-Yuki ;
Ohno, Takao ;
Shimomura, Tetsu .
TOHOKU MATHEMATICAL JOURNAL, 2019, 71 (01) :53-68
[23]   Sobolev inequalities for Musielak-Orlicz spaces [J].
Mizuta, Yoshihiro ;
Ohno, Takao ;
Shimomura, Tetsu .
MANUSCRIPTA MATHEMATICA, 2018, 155 (1-2) :209-227
[24]   TRUDINGER-TYPE INEQUALITIES IN MUSIELAK-ORLICZ SPACES [J].
Ohno, Takao ;
Shimomura, Tetsu .
HOUSTON JOURNAL OF MATHEMATICS, 2022, 48 (03) :479-497
[25]   Fractional Maximal Operator on Musielak–Orlicz Spaces Over Unbounded Quasi-Metric Measure Spaces [J].
Yoshihiro Sawano ;
Tetsu Shimomura .
Results in Mathematics, 2021, 76
[26]   WEAK ESTIMATES FOR THE MAXIMAL AND RIESZ POTENTIAL OPERATORS ON NON-HOMOGENEOUS CENTRAL MORREY TYPE SPACES IN L1 OVER METRIC MEASURE SPACES [J].
Matsuoka, Katsuo ;
Mizuta, Yoshihiro ;
Shimomura, Tetsu .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2020, 45 :1187-1207
[27]   Boundedness of Generalized Fractional Integral Operators on Orlicz Spaces Near L1 Over Metric Measure Spaces [J].
Hashimoto, Daiki ;
Ohno, Takao ;
Shimomura, Tetsu .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2019, 69 (01) :207-223
[28]   Dyadic Maximal Operators on Martingale Musielak-Orlicz Hardy Type Spaces and Applications [J].
Ferenc, Weisz ;
Xie, Guangheng ;
Yang, Dachun .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2023, 95 (04)
[29]   Generalized fractional integral operators on variable exponent Morrey type spaces over metric measure spaces [J].
Ohno, Takao ;
Shimomura, Tetsu .
PORTUGALIAE MATHEMATICA, 2022, 79 (3-4) :265-282
[30]   Boundedness of Dyadic Maximal Operators on Musielak-Orlicz Type Spaces and Its Applications [J].
Weisz, Ferenc ;
Xie, Guangheng ;
Yang, Dachun .
JOURNAL OF GEOMETRIC ANALYSIS, 2025, 35 (03)