Maximal and Riesz Potential Operators on Musielak-Orlicz Spaces Over Metric Measure Spaces

被引:14
作者
Ohno, Takao [1 ]
Shimomura, Tetsu [2 ]
机构
[1] Oita Univ, Fac Educ, Oita 8701192, Japan
[2] Hiroshima Univ, Grad Sch Educ, Dept Math, Higashihiroshima 7398524, Japan
基金
日本学术振兴会;
关键词
Maximal functions; Riesz potentials; Musielak-Orlicz spaces; Sobolev's inequality; Metric measure space; Lower Ahlfors regular; SOBOLEV EMBEDDINGS; GENERALIZED LEBESGUE; VARIABLE EXPONENT; MORREY SPACES; INEQUALITIES; FUNCTIONALS; INTEGRABILITY; BOUNDEDNESS; REGULARITY;
D O I
10.1007/s00020-018-2484-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Our aim in this paper is to deal with the boundedness of the Hardy-Littlewood maximal operator M on Musielak-Orlicz spaces L phi(X) over bounded metric measure spaces. As an application of the boundedness of M, we establish a generalization of Sobolev's inequality for Riesz potentials I(),f with f is an element of L-Phi (X).
引用
收藏
页数:18
相关论文
共 50 条
  • [21] OBSTACLE PROBLEM FOR MUSIELAK-ORLICZ DIRICHLET ENERGY INTEGRAL ON METRIC MEASURE SPACES
    Maeda, Fumi-Yuki
    Ohno, Takao
    Shimomura, Tetsu
    TOHOKU MATHEMATICAL JOURNAL, 2019, 71 (01) : 53 - 68
  • [22] Sobolev inequalities for Musielak-Orlicz spaces
    Mizuta, Yoshihiro
    Ohno, Takao
    Shimomura, Tetsu
    MANUSCRIPTA MATHEMATICA, 2018, 155 (1-2) : 209 - 227
  • [23] TRUDINGER-TYPE INEQUALITIES IN MUSIELAK-ORLICZ SPACES
    Ohno, Takao
    Shimomura, Tetsu
    HOUSTON JOURNAL OF MATHEMATICS, 2022, 48 (03): : 479 - 497
  • [24] Fractional Maximal Operator on Musielak–Orlicz Spaces Over Unbounded Quasi-Metric Measure Spaces
    Yoshihiro Sawano
    Tetsu Shimomura
    Results in Mathematics, 2021, 76
  • [25] WEAK ESTIMATES FOR THE MAXIMAL AND RIESZ POTENTIAL OPERATORS ON NON-HOMOGENEOUS CENTRAL MORREY TYPE SPACES IN L1 OVER METRIC MEASURE SPACES
    Matsuoka, Katsuo
    Mizuta, Yoshihiro
    Shimomura, Tetsu
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2020, 45 : 1187 - 1207
  • [26] Boundedness of Generalized Fractional Integral Operators on Orlicz Spaces Near L1 Over Metric Measure Spaces
    Hashimoto, Daiki
    Ohno, Takao
    Shimomura, Tetsu
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2019, 69 (01) : 207 - 223
  • [27] Dyadic Maximal Operators on Martingale Musielak-Orlicz Hardy Type Spaces and Applications
    Ferenc, Weisz
    Xie, Guangheng
    Yang, Dachun
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2023, 95 (04)
  • [28] Generalized fractional integral operators on variable exponent Morrey type spaces over metric measure spaces
    Ohno, Takao
    Shimomura, Tetsu
    PORTUGALIAE MATHEMATICA, 2022, 79 (3-4) : 265 - 282
  • [29] Boundedness of Dyadic Maximal Operators on Musielak-Orlicz Type Spaces and Its Applications
    Weisz, Ferenc
    Xie, Guangheng
    Yang, Dachun
    JOURNAL OF GEOMETRIC ANALYSIS, 2025, 35 (03)
  • [30] Trudinger's inequality for Riesz potentials of functions in Musielak-Orlicz spaces
    Ohno, Takao
    Shimomura, Tetsu
    BULLETIN DES SCIENCES MATHEMATIQUES, 2014, 138 (02): : 225 - 235